2,858 research outputs found

    Ischemic preconditioning attenuates portal venous plasma concentrations of purines following warm liver ischemia in man

    Get PDF
    Background/Aims: Degradation of adenine nucleotides to adenosine has been suggested to play a critical role in ischemic preconditioning (IPC). Thus, we questioned in patients undergoing partial hepatectomy whether (i) IPC will increase plasma purine catabolites and whether (ii) formation of purines in response to vascular clamping (Pringle maneuver) can be attenuated by prior IPC. Methods: 75 patients were randomly assigned to three groups: group I underwent hepatectomy without vascular clamping; group II was subjected to the Pringle maneuver during resection, and group III was preconditioned (10 min ischemia and 10 min reperfusion) prior to the Pringle maneuver for resection. Central, portal venous and arterial plasma concentrations of adenosine, inosine, hypoxanthine and xanthine were determined by high-performance liquid chromatography. Results: Duration of the Pringle maneuver did not differ between patients with or without IPC. Surgery without vascular clamping had only a minor effect on plasma purine transiently increased. After the Pringle maneuver alone, purine plasma concentrations were most increased. This strong rise in plasma purines caused by the Pringle maneuver, however, was significantly attenuated by IPC. When portal venous minus arterial concentration difference was calculated for inosine or hypoxanthine, the respective differences became positive in patients subjected to the Pringle maneuver and were completely prevented by preconditioning. Conclusion: These data demonstrate that (i) IPC increases formation of adenosine, and that (ii) the unwanted degradation of adenine nucleotides to purines caused by the Pringle maneuver can be attenuated by IPC. Because IPC also induces a decrease of portal venous minus arterial purine plasma concentration differences, IPC might possibly decrease disturbances in the energy metabolism in the intestine as well. Copyright (C) 2005 S. Karger AG, Basel

    Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter

    Full text link
    The Thorium-229 isotope features a nuclear isomer state with an extremely low energy. The currently most accepted energy value, 7.8 +- 0.5 eV, was obtained from an indirect measurement using a NASA x-ray microcalorimeter with an instrumental resolution 26 eV. We study, how state-of-the-art magnetic metallic microcalorimeters with an energy resolution down to a few eV can be used to measure the isomer energy. In particular, resolving the 29.18 keV doublet in the \gamma-spectrum following the \alpha-decay of Uranium-233, corresponding to the decay into the ground and isomer state, allows to measure the isomer transition energy without additional theoretical input parameters, and increase the energy accuracy. We study the possibility of resolving the 29.18 keV line as a doublet and the dependence of the attainable precision of the energy measurement on the signal and background count rates and the instrumental resolution.Comment: 32 pages, 8 figures, eq. (3) correcte

    Construction of Wendelstein 7-X - Engineering a Steady-State Stellarator

    Get PDF

    The South African coelacanths - an account on what is known after three submersible expeditions

    Get PDF
    Using the manned submersible Jago, the habits, distribution and number of coelacanths within all main submarine canyons of the Greater St Lucia Wetland Park were studied during 47 survey dives, with a total bottom time of 166 hours at depths ranging from 46 to 359 m, between 2002 and 2004. Twenty-four individuals were positively identified from three of the canyons, primarily from inside caves at or close to the canyon edges at depths of 96-133 m with water temperatures between 16 and 22.5oC. The population size of coelacanths within the canyons is assumed to be relatively small; coelacanths are resident but not widespread nor abundant within the park

    Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    Get PDF
    International audienceDetailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 ?m; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 ?g m?3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 ?g m?3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (?3) and EC (?3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost every day with particle number concentrations exceeding 104 cm?3 (nighttime background level 1000?2000 cm?3). Closer inspection of two major events indicated that the observed nucleation agrees with ternary H2SO4/H2O/NH3 nucleation and that condensation of both organic and inorganic species contributed to particle growth

    The Los Alamos Trapped Ion Quantum Computer Experiment

    Get PDF
    The development and theory of an experiment to investigate quantum computation with trapped calcium ions is described. The ion trap, laser and ion requirements are determined, and the parameters required for quantum logic operations as well as simple quantum factoring are described.Comment: 41 pages, 16 figures, submitted to Fortschritte der Physi
    corecore