157 research outputs found

    The evolutionary roots of creativity: mechanisms and motivations

    Get PDF
    Funding: MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.We consider the evolution of cognition and the emergence of creative behaviour, in relation to vocal communication. We address two key questions: (i) what cognitive and/or social mechanisms have evolved that afford aspects of creativity?; (ii) has natural and/or sexual selection favoured human behaviours considered ‘creative’? This entails analysis of ‘creativity’, an imprecise construct: comparable properties in non-humans differ in magnitude and teleology from generally agreed human creativity. We then address two apparent problems: (i) the difference between merely novel productions and ‘creative’ ones; (ii) the emergence of creative behaviour in spite of high cost: does it fit the idea that females choose a male who succeeds in spite of a handicap (costly ornament); or that creative males capable of producing a large and complex song repertoire grew up under favourable conditions; or a demonstration of generally beneficial heightened reasoning capacity; or an opportunity to continually reinforce social bonding through changing communication tropes; or something else? We illustrate and support our argument by reference to whale and bird song; these independently evolved biological signal mechanisms objectively share surface properties with human behaviours generally called ‘creative’. Studying them may elucidate mechanisms underlying human creativity; we outline a research programme to do so.PostprintPeer reviewe

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    Search for the standard model Higgs boson at LEP

    Get PDF

    Assessing the transition of municipal solid waste management using combined material flow analysis and life cycle assessment

    Get PDF
    Faced with the challenges to deal with increasingly growing and ever diversified municipal solid waste (MSW), a series of waste directives have been published by European Commission to divert MSW from landfills to more sustainable management options. The presented study assessed the transition of MSW man-agement in Nottingham, UK, since the enforcement of the EU Landfill Directive using a tool of combined materials flow analysis (MFA) and life cycle assess-ment (LCA). The results show that the MSW management system in Nottingham changed from a relatively simple landfill & energy from waste (EfW) mode to a complex, multi-technology mode. Improvements in waste reduction, material re-cycling, energy recovery, and landfill prevention have been made. As a positive result, the global warming potential (GWP) of the MSW management system re-duced from 1,076.0 kg CO2–eq./t of MSW in 2001/02 to 211.3 kg CO2–eq./t of MSW in 2016/17. Based on the results of MFA and LCA, recommendations on separating food waste and textile at source and updating treatment technologies are made for future improvement

    Accelerated FoxP2 Evolution in Echolocating Bats

    Get PDF
    FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure) at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination

    Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches (Taeniopygia guttata)

    Get PDF
    Abstract Background Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches ( Taeniopygia guttata ) under three environmental conditions differing in social complexity during adolescence\ua0-\ua0juvenile pairs, juvenile groups, and mixed-age groups - and studied males\u2019 behavioural, endocrine, and morphological maturation, and later their adult behaviour. Results As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment. Conclusion Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated

    Catalysing sustainable fuel and chemical synthesis

    Get PDF
    Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands

    Measurement of the W+W−γW^{+}W^{-} \gamma Cross-section and First direct Limits on Anomalous Electroweak Quartic Gauge Couplings

    Get PDF
    A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.A study of W + W − events accompanied by hard photon radiation produced in e + e − collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183 pb −1 of data recorded at s =189 GeV. From these data, 17 W + W − γ candidates are selected with photon energy greater than 10 GeV, consistent with the Standard Model expectation. These events are used to measure the e + e − →W + W − γ cross-section within a set of geometric and kinematic cuts, σ ̂ WW γ =136±37±8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the W + W − γγ and W + W − γ Z 0 vertices: −0.070 GeV −
    • …
    corecore