1,264 research outputs found

    Developing a model of technology acceptance within the Australian healthcare sector

    Get PDF
    The research reported in this paper elucidates the development, empirical validation and preliminary analysis of a model of technology acceptance by Australian occupational therapists. The study described involved the collection of quantitative and qualitative data through a national survey and a longitudinal multi-method case study within a communitybased healthcare organisation. The theoretical significance of this work is that it uses a thoroughly constructed research model, with potentially the largest sample size ever tested (2000+), to extend technology acceptance research into the health sector. Results provide support for the proposed model. This work reveals the complexity of the constructs and relationships that influence technology acceptance and highlights a need for reconceptualising current models. Results also demonstrate the importance of qualitative methodologies in information systems research. The significance and implications of the findings are discussed

    Gastropod-derived haemocyte extracellular traps entrap metastrongyloid larval stages of Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior

    Get PDF
    Background: Phagocyte-derived extracellular traps (ETs) were recently demonstrated mainly in vertebrate hosts as an important effector mechanism against invading parasites. In the present study we aimed to characterize gastropod-derived invertebrate extracellular phagocyte trap (InEPT) formation in response to larval stages of important canine and feline metastrongyloid lungworms. Gastropod haemocytes were isolated from the slug species Arion lusitanicus and Limax maximus, and the snail Achatina fulica, and exposed to larval stages of Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior and investigated for gastropod-derived InEPT formation. Results: Phase contrast as well as scanning electron microscopy (SEM) analyses of lungworm larvae-exposed haemocytes revealed ET-like structures to be extruded by haemocytes thereby contacting and ensnaring the parasites. Co-localization studies of haemocyte-derived extracellular DNA with histones and myeloperoxidase in larvae-entrapping structures confirmed classical characteristics of ETs. In vivo exposure of slugs to A. vasorum larvae resulted in InEPTs being extruded from haemocytes in the slug mucous extrapallial space emphasizing the pivotal role of this effector mechanism against invasive larvae. Functional larval entrapment assays demonstrated that almost half of the haemocyte-exposed larvae were contacted or even immobilized by released InEPTs. Overall, as reported for mammalian-derived ETs, different types of InEPTs were here observed, i.e. aggregated, spread and diffused InEPTs. Conclusions: To our knowledge, this study represents the first report on metastrongyloid lungworm-triggered ETosis in gastropods thereby providing evidence of early mollusc host innate immune reactions against invading larvae. These findings will contribute to the better understanding on complex parasite-intermediate host interactions since different gastropod species bear different transmitting capacities for metastrongyloid infections

    Impurity intrusion in radio-frequency micro-plasma jets operated in ambient air

    Full text link
    Space and time resolved concentrations of helium metastable atoms in an atmospheric pressure radio-frequency micro-plasma jet were measured using tunable diode laser absorption spectroscopy. Spatial profiles as well as lifetime measurements show significant influences of air entering the discharge from the front nozzle and of impurities originating from the gas supply system. Quenching of metastables was used to deduce quantitative concentrations of intruding impurities. The impurity profile along the jet axis was determined from optical emission spectroscopy as well as their dependance on the feed gas flow through the jet.Comment: Journal of Physics D: Applied Physics (accepted), 6 page

    Increased forefoot loading is associated with an increased plantar flexion moment

    Get PDF
    The aim of this study was to identify the cascade of effects leading from alterations in force generation around the ankle joint to increased plantar pressures under the forefoot. Gait analysis including plantar pressure measurement was performed at an individually preferred and a standardized, imposed gait velocity in diabetic subjects with polyneuropathy (n=94), without polyneuropathy (n=39) and healthy elderly (n=19). The plantar flexion moment at 40% of the stance phase was negatively correlated with the displacement rate of center of pressure (r=-.749, p<.001 at the imposed, and r=-.693, p<.001 at the preferred gait velocity). Displacement rate of center of pressure was strongly correlated with forefoot loading (r=-.837, p<.001 at the imposed, and r=-.731, p<.001 at the preferred gait velocity). People with a relatively high plantar flexion moment at 40% of the stance phase, have a faster forward transfer of center of pressure and consequently higher loading of the forefoot. This indicates that interventions aimed at increasing the control of the roll-off of the foot may contribute to a better plantar pressure distribution

    Strength Training Affects Lower Extremity Gait Kinematics, Not Kinetics, in People With Diabetic Polyneuropathy

    Get PDF
    Increased forefoot loading in diabetic polyneuropathy plays an important role in the development of plantar foot ulcers and can originate from alterations in muscle strength, joint moments and gait pattern. The current study evaluated whether strength training can improve lower extremity joint moments and spatiotemporal gait characteristics in patients with diabetic polyneuropathy. An intervention group receiving strength training during 24 weeks and a control group receiving no intervention. Measurements were performed in both groups at t= 0, t= 12, t= 24 and t= 52 weeks at an individually preferred and standardized imposed gait velocity. The strength training did not affect the maximal amplitude of hip, knee and ankle joint moments, but did result in an increase in stance phase duration, stride time and stride length of approximately 5 %, during the imposed gait velocity. In addition, both groups increased their preferred gait velocity over one year. Future longitudinal studies should further explore the possible effects of strength training on spatiotemporal gait characteristics. The current study provides valuable information on changes in gait velocities and the progressive lower extremity problems in patients with polyneuropathy

    Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas

    Full text link
    Electron heating and ionization dynamics in capacitively coupled radio frequency (RF) atmospheric pressure microplasmas operated in helium are investigated by Particle in Cell simulations and semi-analytical modeling. A strong heating of electrons and ionization in the plasma bulk due to high bulk electric fields are observed at distinct times within the RF period. Based on the model the electric field is identified to be a drift field caused by a low electrical conductivity due to the high electron-neutral collision frequency at atmospheric pressure. Thus, the ionization is mainly caused by ohmic heating in this "Omega-mode". The phase of strongest bulk electric field and ionization is affected by the driving voltage amplitude. At high amplitudes, the plasma density is high, so that the sheath impedance is comparable to the bulk resistance. Thus, voltage and current are about 45{\deg} out of phase and maximum ionization is observed during sheath expansion with local maxima at the sheath edges. At low driving voltages, the plasma density is low and the discharge becomes more resistive resulting in a smaller phase shift of about 4{\deg}. Thus, maximum ionization occurs later within the RF period with a maximum in the discharge center. Significant analogies to electronegative low pressure macroscopic discharges operated in the Drift-Ambipolar mode are found, where similar mechanisms induced by a high electronegativity instead of a high collision frequency have been identified

    Evaluation of the Efficacy and Safety of an Imidacloprid 10 % / Moxidectin 1 % Spot-on Formulation (Advocate®, Advantage® Multi) in Cats Naturally Infected with Capillaria aerophila

    Get PDF
    The parasitic nematode Capillaria (C.) aerophila affects the respiratory system of domestic and wild animals and, albeit rarely, human beings. In cats the infection may be subclinical, or present as chronic bronchitis with various respiratory clinical signs. In Europe there is no licensed product for the treatment of pet capillariosis. The present study aimed to deliver further evidence of the efficacy and safety of a spot-on formulation containing moxidectin 1 % (w/v) and imidacloprid 10 % (w/v) (Advocate (R), Advantage (R) Multi, Bayer) in the treatment of C. aerophila infection in cats when administered once at the approved dose (one pipette 0.4 ml for cats weighing 1-4 kg, one pipette 0.8 ml for cats weighing 4-8 kg). Efficacy was tested on days 7 +/- 1 and 11 +/- 1 following treatment on day 0 and compared to pre-treatment faecal egg counts on days -6 +/- 2 and -2 +/- 2. Overall, 41 cats were enrolled in two groups: G1, treated with Advocate (R) (n=20 cats) and G2, left untreated (n=21 cats). All G1 cats were negative for C. aerophila faecal egg output at the post-treatment evaluation (efficacy: 100 %) while all G2 cats were persistently infested with an average of 195.2 EPG. Differences in mean EPG values were statistically significant (p< 0.001). Of the eleven G1 cats that showed respiratory signs at pre-treatment enrolment, nine fully recovered after the administration of Advocate (R). No adverse events occurred in treated cats. This trial confirmed that Advocate (R) is safe and effective in the treatment of feline lung capillariosis in naturally infected cats

    Actin-binding rho activating protein (Abra) is essential for fluid shear stress-induced arteriogenesis

    Get PDF
    OBJECTIVE: Arteriogenesis, the development of a collateral circulation, is important for tissue survival but remains functionally defective because of early normalization of fluid shear stress (FSS). Using a surgical model of chronically elevated FSS we showed that rabbits exhibited normal blood flow reserve after femoral artery ligature (FAL). Inhibition of the Rho pathway by Fasudil completely blocked the beneficial effect of FSS. In a genome-wide gene profiling we identified actin-binding Rho activating protein (Abra), which was highly upregulated in growing collaterals. METHODS AND RESULTS: qRT-PCR and Western blot confirmed highly increased FSS-dependent expression of Abra in growing collaterals. NO blockage by L-NAME abolished FSS-generated Abra expression as well as the whole arteriogenic process. Cell culture studies demonstrated an Abra-triggered proliferation of smooth muscle cells through a mechanism that requires Rho signaling. Local intracollateral adenoviral overexpression of Abra improved collateral conductance by 60% in rabbits compared to the natural response after FAL. In contrast, targeted deletion of Abra in CL57BL/6 mice led to impaired arteriogenesis. CONCLUSIONS: FSS-induced Abra expression during arteriogenesis is triggered by NO and leads to stimulation of collateral growth by smooth muscle cell proliferation
    corecore