41 research outputs found

    Characterization of large area avalanche photodiodes in X-ray and VUV-light detection

    Get PDF
    The present manuscript reviews our R+D studies on the application of large area avalanche photodiodes (LAAPDs) to the detection of X-rays and vacuum ultraviolet (VUV) light. The operational characteristics of LAAPDs manufactured by Advanced Photonix Inc. were investigated for X-ray detection at room temperature. The optimum energy resolution obtained in four LAAPDs investigated was found to be in the range 10-18% for 5.9 keV X-rays. The observed variations are associated with dark current differences between the several prototypes. LAAPDs have demonstrated high counting rate capability (up to about 10⁔/s) and applicability in diverse areas, mainly low-energy X-ray detection, where LAAPDs selected for low dark current may achieve better performance than proportional counters. LAAPDs were also investigated as VUV photosensors, presenting advantages compared to photomultiplier tubes. X-rays are often used as a reference in light measurements; this may be compromised by the non-linearity between gains measured for X-rays and VUV-light. The gain was found to be lower for X-rays than for VUV light, especially at higher bias voltages. For 5.9 keV X-rays, gain variations of 10% and 6% were measured relative to VUV light produced in argon ( ∌ 128 nm) and xenon ( ∌ 172 nm) for gains of about 200. The effect of temperature on the LAAPD performance was investigated for X-ray and VUV-light detection. Gain variations of more than -4% per oC were measured for 5.9 keV X-rays for gains above 200, while for VUV light variations are larger than -5% per oC. The energy resolution was found to improve with decreasing temperature, what is mainly attributed to dark current. The excess noise factor, another contribution to the energy resolution, was experimentally determined and found to be independent of temperature, increasing linearly with gain, from 1.8 to 2.3 for a 50-300 gain range. The LAAPD response under intense magnetic fields up to 5 Tesla was investigated. While for X-ray detection the APD response practically does not vary with the magnetic field, for 172 nm VUV light a significant amplitude reduction of more than 20% was observed

    The size of the proton and the deuteron

    Get PDF
    We have recently measured the 2S1/2⁌Âč − 2P3/2 ⁌ ÂČ energy splitting in the muonic hydrogen atom ÎŒp to be 49881.88 (76) GHz. Using recent QED calculations of the fine-, hyperfine, QED and finite size contributions we obtain a root-mean-square proton charge radius of rp = 0.84184 (67) fm. This value is ten times more precise, but 5 standard deviations smaller, than the 2006 CODATA value of rp = 0.8768 (69) fm. The source of this discrepancy is unknown. Using the precise measurements of the 1S-2S transition in regular hydrogen and deuterium and our value of rp we obtain improved values of the Rydberg constant, R∞ = 10973731.568160 (16) m⁻Âčand the rms charge radius of the deuteron rd = 2.12809 (31) fm

    The Lamb shift in muonic hydrogen and the proton radius

    Get PDF
    By means of pulsed laser spectroscopy applied to muonic hydrogen (Ό− p) we have measured the 2S F = 1 1/2 − 2PF = 2 3/2 transition frequency to be 49881.88(76) GHz. By comparing this measurement with its theoretical prediction based on bound-state QED we have determined a proton radius value of rp = 0.84184 (67) fm. This new value is an order of magnitude preciser than previous results but disagrees by 5 standard deviations from the CODATA and the electronproton scattering values. An overview of the present effort attempting to solve the observed discrepancy is given. Using the measured isotope shift of the 1S-2S transition in regular hydrogen and deuterium also the rms charge radius of the deuteron rd = 2.12809 (31) fm has been determined. Moreover we present here the motivations for the measurements of the ÎŒ 4He + and ÎŒ 3He + 2S-2P splittings. The alpha and triton charge radii are extracted from these measurements with relative accuracies of few 10 − 4. Measurements could help to solve the observed discrepancy, lead to the best test of hydrogen-like energy levels and provide crucial tests for few-nucleon ab-initio theories and potentials

    The Lamb shift in muonic hydrogen

    Get PDF
    The long quest for a measurement of the Lamb shift in muonic hydrogen is over. Last year we measured the 2S1/2F=1–2P3/2F=2 energy splitting (Pohl et al., Nature, 466, 213 (2010)) in ÎŒp with an experimental accuracy of 15 ppm, twice better than our proposed goal. Using current QED calculations of the fine, hyperfine, QED, and finite size contributions, we obtain a root-mean-square proton charge radius of rp = 0.841 84 (67) fm. This value is 10 times more precise, but 5 standard deviations smaller, than the 2006 CODATA value of rp. The origin of this discrepancy is not known. Our measurement, together with precise measurements of the 1S–2S transition in regular hydrogen and deuterium, gives improved values of the Rydberg constant, R∞ = 10 973 731.568 160 (16) m⁻Âč and the rms charge radius of the deuteron rd = 2.128 09 (31) fm

    The Lamb shift in muonic hydrogen 1

    Get PDF
    Abstract: The long quest for a measurement of the Lamb shift in muonic hydrogen is over. Last year we measured the energy splitting (Pohl et al., Nature, 466, 213 (2010)) in mp with an experimental accuracy of 15 ppm, twice better than our proposed goal. Using current QED calculations of the fine, hyperfine, QED, and finite size contributions, we obtain a rootmean-square proton charge radius of r p = 0.841 84 (67) fm. This value is 10 times more precise, but 5 standard deviations smaller, than the 2006 CODATA value of r p . The origin of this discrepancy is not known. Our measurement, together with precise measurements of the 1S-2S transition in regular hydrogen and deuterium, gives improved values of the Rydberg constant, R ? = 10 973 731.568 16

    Muon capture by ÂłHe nuclei followed by proton and deuteron production

    Get PDF
    The paper describes an experiment aimed at studying muon capture by He nuclei in pure ÂłHe and D₂+ÂłHe mixtures at various densities. Energy distributions of protons and deuterons produced via ”₋+ÂłHe-->p + n + n + Μ” and ”₋+ÂłHe-->d + n + Μ” are measured for the energy intervals 10–49 MeV and 13–31 MeV, respectively. Muon capture rates lambdacapp(ΔEp) and lambdacapd(ΔEd) are obtained using two different analysis methods. The least-squares methods give lambdacapp = (36.7±1.2) s–1, lambdacapd = (21.3±1.6) s–1. The Bayes theorem gives lambdacapp = (36.8±0.8) s–1, lambdacapd = (21.9±0.6) s–1. The experimental differential capture rates, dlambdacapp(Ep)/dEp and dlambdacapd(Ed)/dEd, are compared with theoretical calculations performed using the plane-wave impulse approximation with the realistic nearest-neighbor interaction Bonn B potential. Extrapolation to the full energy range yields total proton and deuteron capture rates in good agreement with former result

    Experimental study of ”-atomic and ”-molecular processes in pure helium and deuterium-helium mixtures

    Get PDF
    We present experimental results of ”-atomic and ”-molecular processes induced by negative muons in pure helium and helium-deuterium mixtures. The experiment was performed at the Paul Scherrer Institute (Switzerland). We measured relative intensities of muonic x-ray K series transitions in (”3,4He)* atoms in pure helium as well as in helium-deuterium mixtures. The d”³He radiative decay probabilities for two different helium densities in D2+³He mixture were also determined. Finally, the qHe1s probability for a d” atom formed in an excited state to reach the ground state was measured and compared with theoretical calculations using a simple cascade model

    Ramsauer-Townsend effect in muonic atom scattering

    Get PDF
    We present the final results of an experimental study of ”d and ”t atom scattering in solid hydrogen cooled to 3 K. Strong effects resulting from the Ramsauer-Townsend effect have been observed in the TRIUMF experiment E742 where muons were stopped in thin frozen layers of hydrogen. The measured Ramsauer-Townsend minimum energy for both ”d and ”t atoms and the minimum cross section are in agreement with theor

    The DEAR experiment—first results on kaonic hydrogen

    Get PDF
    The goal of the DEAR (DAΊNE exotic atom research) experiment is the precise determination of the isospin dependent antikaon–nucleon scattering lengths. The experiment accurately measures the Kα line shift and broadening, due to the strong interaction, in kaonic hydrogen and, for the first time, in kaonic deuterium. A precision measurement of kaonic hydrogen tests chiral symmetry breaking in systems with strangeness. An initial analysis of the DEAR experiment yields a shift Δ1s=−195±45 eV and a width Γ1s=250±125 eV, which is more precise than the previous kaonic X-ray experiment KpX at KEK, and allows for the first time to disentangle the full pattern of the kaonic hydrogen K-series line Kα, KÎČ and KÎł
    corecore