10 research outputs found

    GAMETOCYTE SEX RATIO OF A MALARIA PARASITE: EXPERIMENTAL TEST OF HERITABILITY

    Get PDF

    Revista de Vertebrados de la Estación Biológica de Doñana

    Get PDF
    Anfibios fósiles del Pleistoceno de Mallorca.Species densities of Reptiles and Amphibiansfon the Iberian PeninsulaEcología alimenticia del Petirrojo (Erithacus rubecula) durante su invernada en encinares del Sur de EspañaEl papel d. la Perdiz roja (Alectoris rufa) en la dieta de los predadores IbéricosComposición de las Comunidades de Passeriformes en dos biotopos de Sierra Morena Occidental.Sobre las Ginetas de la Isla de Ibiza (Genetta genetta isabelae n. ssp.)Peer reviewe

    Data from: Testing sex ratio theory with the malaria parasite Plasmodium mexicanum in natural and experimental infections

    No full text
    The malaria parasite (Plasmodium) life history accords well with the assumptions of Local Mate Competition (LMC) of sex ratio theory. Within a single meal of the blood-feeding vector, sexually dimorphic gametocyte cells produce gametes (females produce 1, males several) that mate and undergo sexual recombination. The theory posits several factors drive the Plasmodium sex ratio: male fecundity (gametes/ male gametocyte), number and relative abundance of parasite clones, and gametocyte density. We measured these traits for the lizard malaria parasite, P. mexicanum, with a large sample of natural infections and infections from experiments which manipulated clonal diversity. Sex ratio in single-clone infections was slightly female-biased, but matched predictions of theory for this low-fecundity species. Sex ratio was less female-biased in clonally diverse infections as predicted by LMC for the experimental, but not natural infections. Gametocyte density was not positively related to sex ratio. These results are explained by the P. mexicanum life history of naturally low clonal diversity and high gametocyte production. This is the first study of a natural malaria system that examines all traits relevant to LMC in individual vertebrate hosts and suggests a striking example of sex ratio theory having significance for human public health

    Variation and trade-offs in life history traits of the protist parasite Monocystis perplexa (Apicomplexa) in its earthworm host Amynthas agrestis

    No full text
    The life history of a parasite describes its partitioning of assimilated resources into growth, reproduction, and transmission effort, and its precise timing of developmental events. The life cycle, in contrast, charts the sequence of morphological stages from feeding to the transmission forms. Phenotypic plasticity in life history traits can reveal how parasites confront variable environments within hosts. Within the protist phylum Apicomplexa major clades include the malaria parasites, coccidians, and most diverse, the gregarines (with likely millions of species). Studies on life history variation of gregarines are rare. Therefore, life history traits were examined for the gregarine Monocystis perplexa in its host, the invasive earthworm Amynthas agrestis at three sites in northern Vermont, United States of America. An important value of this system is the short life-span of the hosts, with only seven months from hatching to mass mortality; we were thus able to examine life history variation during the entire life cycle of both host and parasite. Earthworms were collected (N = 968 over 33 sample periods during one host season), then parasites of all life stages were counted, and sexual and transmission stages measured, for each earthworm. All traits varied substantially among individual earthworm hosts and across the sites. Across sites, timing of first appearance of infected earthworms, date when transmission stage (oocysts packed within gametocysts) appeared, date when number of both feeding (trophic) cells and gametocysts were at maximum, and date when 100% of earthworms were infected differed from 2–8 weeks, surprising variation for a short season available for parasite development. The maximal size of mating cells varied among hosts and across sites and this is reflected in the number of oocysts produced by the gametocyst. A negative trade-off was observed for the number of oocysts and their size. Several patterns were striking: (1) Prevalence reached 100% at all sites by mid season, only one to three weeks after parasites first appeared in the earthworms. (2) The number of parasites per host was large, reaching 300 × 103 cells in some hosts, and such high numbers were present even when parasites first appeared in the host. (3) At one site, few infected earthworms produced any oocysts. (4) The transmission rate to reach such high density of parasites in hosts needed to be very high for a microbe, from >0.33% to >34.3% across the three sites. Monocystis was one of the first protist parasites to have its life cycle described (early 19th century), but these results suggest the long-accepted life cycle of Monocystis could be incomplete, such that the parasites may be transmitted vertically (within the earthworm’s eggs) as well as horizontally (leading to 100% prevalence) and merogony (asexual replication) could be present, not recognized for Monocystis, leading to high parasitemia even very early in the host’s season

    Establishment Efficiency Among Clones of the Malaria Parasite, Plasmodium mexicanum

    No full text

    Lizards Infected with Malaria: Physiological and Behavioral Consequences

    No full text
    In northern California, western fence lizards, Sceloporus occidentalis, are frequently parasitized by Plasmodium mexicanum, which causes malaria. Animals with this naturally occurring malarial infection are anemic; immature erythrocytes in peripheral blood become abundant (1 to 30 percent), and blood hemoglobin concentration decreases 25 percent. Maximal oxygen consumption decreases 15 percent and aerobic scope drops 29 percent in infected lizards; both correlate with blood hemoglobin concentration. Running stamina, but not burst running speed, is reduced in malarious lizards. There is a hierarchical relation between infection with malaria and effects on hematology, physiological function, and behavioral capacity. The results suggest that malarial infection may have significant effects on the ecology of lizard hosts

    Lizards Infected with Malaria: Physiological and Behavioral Consequences

    No full text
    In northern California, western fence lizards, Sceloporus occidentalis, are frequently parasitized by Plasmodium mexicanum, which causes malaria. Animals with this naturally occurring malarial infection are anemic; immature erythrocytes in peripheral blood become abundant (1 to 30 percent), and blood hemoglobin concentration decreases 25 percent. Maximal oxygen consumption decreases 15 percent and aerobic scope drops 29 percent in infected lizards; both correlate with blood hemoglobin concentration. Running stamina, but not burst running speed, is reduced in malarious lizards. There is a hierarchical relation between infection with malaria and effects on hematology, physiological function, and behavioral capacity. The results suggest that malarial infection may have significant effects on the ecology of lizard hosts

    Carbon Dots: Excitation-Dependent Photoluminescence from Single-Carbon Dots (Small 48/2017)

    Get PDF
    In article 1702098, by Bart van Dam, Minjie Li, and co‐workers, single‐dot spectroscopy is used to show that individual carbon dots already exhibit excitation‐dependent photoluminescence, very similar to the ensemble of carbon dots. Characteristic excitation‐dependent emission spectra are identified, indicating the presence of multiple active emission sites within a carbon dot. This shows that it is possible to engineer different types of electron transitions in nanoscopic dimensions through facile chemical synthesis
    corecore