22 research outputs found

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de Estudios ParasitolĂłgicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios ParasitolĂłgicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San SimĂłn; BoliviaFil: Arroyo Cabrales, JoaquĂ­n. Instituto Nacional de AntropologĂ­a E Historia, Mexico; MĂ©xicoFil: AstĂșa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad CatĂłlica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad CatĂłlica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do EspĂ­rito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: CuĂ©llar Soto, Erika. Sultan Qaboos University; OmĂĄnFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. MusĂ©um National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadĂĄFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico - TucumĂĄn. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: HacklĂ€nder, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibåñez Ulargui, Carlos. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones CientĂ­ficas. EstaciĂłn BiolĂłgica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do EspĂ­rito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadĂĄFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. UniversitĂ  degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, NictĂ©. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto de Diversidad y EvoluciĂłn Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerĂșFil: Schai-Braun, StĂ©phanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂ­a Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BĂ©lgicaFil: Veron, Geraldine. UniversitĂ© Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Daily activity pattern, space use and habitat preferences of the European hare (Lepus europaeus)

    No full text
    Seit den 1960er-Jahren nimmt die Anzahl der Feldhasen (Lepus europaeus) in ganz Europa ab. Um die Lebensbedingungen der Feldhasen zu verbessern, mĂŒssen grundlegende Aspekte der Ökologie dieser Tierart erforscht werden. Im Rahmen dieser Doktorarbeit wurden zu diesem Zweck einerseits AktivitĂ€tsmuster und Raumnutzung und andererseits HabitatprĂ€ferenzen untersucht. Wir rĂŒsteten neun Feldhasen mit GPS-HalsbĂ€ndern aus, die programmiert waren, eine Positionsaufnahme pro Stunde zu tĂ€tigen. Damit konnten wir den Einfluss des Tageslichts auf die BewegungsaktivitĂ€t der Feldhasen studieren. Da die Tiere in einem vom Getreideanbau dominierten Landwirtschaftsgebiet telemetriert wurden, konnten wir ĂŒberdies RĂŒckschlĂŒsse ĂŒber den Einfluss der Ernte auf die Raumnutzung gewinnen. Schliesslich analysierten wir die Vegetation an den tagsĂŒber genutzten RuheplĂ€tzen und die Habitatselektion wĂ€hrend der aktiven Phase, das heisst in den frĂŒhen Nachtstunden. Die Studien betreffend RuheplĂ€tze und Habitatselektion fanden zum ersten Mal in einem Landwirtschaftsgebiet mit niedriger Feldhasendichte (6 Feldhasen pro 100 ha) statt.Over recent decades a general decline in European hare (Lepus europaeus) densities all over Europe has been recorded. To increase the European hares living conditions, fundamental aspects of the species ecology have to be known. In this doctoral thesis, on the one hand, the species activity pattern and space use and, on the other hand, the European hares habitat preferences were investigated. We equipped nine European hares with GPS-collars programmed to take one fix per hour. We were therefore able to study the influence of daylight regime on the hares diurnal locomotor activity patterns. As the telemetry was conducted in a cereal dominated agricultural landscape, we moreover investigated the effects of harvest on the hares space use. Furthermore, the vegetation characteristics at hares resting places during daytime and habitat selection during activity, i.e. the early night hours, were analysed. The studies on hares resting places and habitat selection was conducted for the first time in an agricultural area with low hare density (6 hares per 100 ha).by StĂ©phanie C. Schai-BraunAbweichender Titel laut Übersetzung der Verfasserin/des VerfassersWien, Univ. fĂŒr Bodenkultur, Diss., 2013OeBB(VLID)193055

    Estimating Sustainable Harvest Rates for European Hare (<i>Lepus Europaeus</i>) Populations

    No full text
    Hunting quotas are used to manage populations of game species in order to ensure sustainable exploitation. However, unpredictable climatic events may interact with hunting. We established a population model for European hares (Lepus europaeus) in Lower Austria. We compared the sustainability of voluntary quotas used by hunters&#8212;which are derived from hare-specific guidelines&#8212;with the actual numbers of hares shot and our recommended quotas for hares, which have been derived from climate and population modeling. We used population modeling based on vital rates and densities to adjust our recommended quotas in order to achieve sustainable harvest. The survival of age classes 1 and 3 had the highest impact on the population growth rate. Population viability analysis showed that a recommended quota with a harvest rate of 10% was sustainable for population densities of 45 hares/km2, and that the threshold for hunting should be raised from 10 hares/km2 so that hare populations with &lt;15 hares/km2 are not hunted. The recommended quota outperformed the voluntary hunting quota, since more hares could be harvested sustainably. Age Class 1 survival was strongly linked with weather: a single year with unfavorable weather conditions (low precipitation) negatively affected population densities. Game species, including the European hare, face increasingly frequent weather extremes due to climate change, so hunting quotas need to be sensitive to frequent population fluctuations

    Maternal effects on reproduction in the precocial European hare (Lepus europaeus).

    No full text
    In female mammals, reproduction, and in particular lactation, is the energetically most exigent life-history phase. Reproduction is strongly controlled by body reserves and food availability, so females with better body condition or food supply are believed to have higher reproductive output. Additionally, the growth and mortality of young mammals depends on their postnatal development. Therefore, the degree of precociality affects energetic demands for both mothers and young. To study the reproductive performance of the precocial European hare (Lepus europaeus), we analysed relationships between six predictor variables describing maternal and environmental effects and nine response variables relating to reproduction from 217 captive females. We compared the data with those of precocial and altricial mammal species from an extensive literature search. For hares, we found: (1) Heavier females had heavier litters at birth. (2) In summer and spring, total litter mass was larger than in winter. (3) At the end of lactation, the litters of multiparous females were heavier than those of primiparous females. (4) Both older females and females giving birth for the first time had relatively high leveret mortality during lactation. Comparing our results with the literature for other mammals revealed that the body condition (i.e., body mass) of females before birth is predictive of reproductive parameters in both precocial and altricial species. In the precocial hare, female body condition is no longer predictive of reproductive parameters at the end of lactation, whereas in altricial species, female body condition remains predictive of reproduction (litter mass at the end of lactation, offspring mortality) until the end of lactation. We conclude that these effects are caused by precocial offspring feeding on solid food soon after birth and, thus, being less dependent on the mother's body condition during lactation than altricial offspring. In line with this, precociality might have evolved as a way of buffering offspring against maternal effects

    The European Hare (Lepus europaeus): A Picky Herbivore Searching for Plant Parts Rich in Fat.

    Get PDF
    European hares of both sexes rely on fat reserves, particularly during the reproduc-tive season. Therefore, hares should select dietary plants rich in fat and energy. However, hares also require essential polyunsaturated fatty acids (PUFA) such as linoleic acid (LA) and alpha-linolenic acid (ALA) to reproduce and survive. Although hares are able to absorb PUFA selectively in their gastrointestinal tract, it is unknown whether this mechanism is sufficient to guarantee PUFA supply. Thus, diet selection may involve a trade-off between a preference for energy versus a preference for crucial nutrients, namely PUFA. We compared plant and nutrient availability and use by hares in an arable landscape in Austria over three years. We found that European hares selected their diet for high energy content (crude fat and crude protein), and avoided crude fibre. There was no evidence of a preference for plants rich in LA and ALA. We conclude that fat is the limiting resource for this herbivorous mammal, whereas levels of LA and ALA in forage are sufficiently high to meet daily requirements, especially since their uptake is enhanced by physiological mechanisms. Animals selected several plant taxa all year round, and preferences did not simply correlate with crude fat content. Hence, European hares might not only select for plant taxa rich in fat, but also for high-fat parts of preferred plant taxa. As hares preferred weeds/grasses and various crop types while avoiding cereals, we suggest that promoting heterogeneous habitats with high crop diversity and set-asides may help stop the decline of European hares throughout Europe

    Chesson’s Electivity Indices for plant taxa.

    No full text
    <p>Chesson’s Electivity Indices in European hares (n = 399) and their distributions of 1000 bootstrap resamples (mean and 95% confidence interval) for plant taxa selected by n≄7 hares (sample size in brackets is the number of hares selecting each plant taxon). Non-significant results cross the vertical line at zero. See text for details of statistics.</p

    Post-hoc test results of the electivity indices (parameter estimates ÎČ and <i>p</i>-values) of the different fatty acids for the covariate season using the Tukey’s all-pair comparisons method (n = 269).

    No full text
    <p>Post-hoc test results of the electivity indices (parameter estimates ÎČ and <i>p</i>-values) of the different fatty acids for the covariate season using the Tukey’s all-pair comparisons method (n = 269).</p
    corecore