311 research outputs found

    The impact of confirmed coronavirus disease 2019 (COVID-19) infection on ambulatory procedures and associated delays in care for asymptomatic patients

    Get PDF
    © 2021 Elsevier Inc. Background: Since the reopening of ambulatory centers, minimal data has been reported regarding positive tests among patients undergoing ambulatory procedures, associated delays in care, and outcomes of patients previously positive for coronavirus disease 2019. Methods: A retrospective observational case series of ambulatory procedures was performed. Records since the reopening of ambulatory centers in New York were searched for patients with positive coronavirus disease 2019 nasal swab results who underwent ambulatory procedures. Chart reviews were conducted to determine coronavirus disease history and hospitalizations, demographic information, procedure details, and 30-day admissions. Results: A total of 3,762 patients underwent ambulatory procedures. Of those, 53 were previously diagnosed with coronavirus disease 2019 but recovered and tested negative at preprocedural testing. Of the 3,709 asymptomatic patients, 37 (1.00%) tested positive during preprocedural testing; 21 patients had their procedures delayed on average 28.6 days until testing negative, while 16 had their procedures performed before testing negative owing to the time sensitivity of the procedure. There were no major complications or 30-day admissions in any of these asymptomatic patients. Three patients tested positive for coronavirus disease after having an ambulatory procedure. Conclusion: Positive tests in asymptomatic patients led to procedure delays of 28.6 days. No patients who underwent ambulatory procedures after a positive coronavirus disease 2019 test had any coronavirus disease-related complications, regardless of whether or not the procedure was delayed until testing negative. Three patients tested positive for coronavirus disease 2019 after having an ambulatory procedure; however, at an average of 19.7 days after, these cases were likely community acquired making the rate of nosocomial infection negligible

    An extremal effective survey about extremal effective cycles in moduli spaces of curves

    Full text link
    We survey recent developments and open problems about extremal effective divisors and higher codimension cycles in moduli spaces of curves.Comment: Submitted to the Proceedings of the Abel Symposium 2017. Comments are welcom

    Green tea polyphenol treatment is chondroprotective, anti-inflammatory and palliative in a mouse posttraumatic osteoarthritis model

    Full text link
    Introduction Epigallocatechin 3-gallate (EGCG), a polyphenol present in green tea, was shown to exert chondroprotective effects in vitro. In this study, we used a posttraumatic osteoarthritis (OA) mouse model to test whether EGCG could slow the progression of OA and relieve OA-associated pain. Methods C57BL/6 mice were subjected to surgical destabilization of the medial meniscus (DMM) or sham surgery. EGCG (25 mg/kg) or vehicle control was administered daily for 4 or 8 weeks by intraperitoneal injection starting on the day of surgery. OA severity was evaluated using Safranin O staining and Osteoarthritis Research Society International (OARSI) scores, as well as by immunohistochemical analysis to detect cleaved aggrecan and type II collagen and expression of proteolytic enzymes matrix metalloproteinase 13 (MMP-13) and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). Real-time PCR was performed to characterize the expression of genes critical for articular cartilage homeostasis. During the course of the experiments, tactile sensitivity testing (von Frey test) and open-field assays were used to evaluate pain behaviors associated with OA, and expression of pain expression markers and inflammatory cytokines in the dorsal root ganglion (DRG) was determined by real-time PCR. Results Four and eight weeks after DMM surgery, the cartilage in EGCG-treated mice exhibited less Safranin O loss and cartilage erosion, as well as lower OARSI scores compared to vehicle-treated controls, which was associated with reduced staining for aggrecan and type II collagen cleavage epitopes, and reduced staining for MMP-13 and ADAMTS5 in the articular cartilage. Articular cartilage in the EGCG-treated mice also exhibited reduced levels of Mmp1, Mmp3, Mmp8, Mmp13,Adamts5, interleukin 1 beta (Il1b) and tumor necrosis factor alpha (Tnfa) mRNA and elevated gene expression of the MMP regulator Cbp/p300 interacting transactivator 2 (Cited2). Compared to vehicle controls, mice treated with EGCG exhibited reduced OA-associated pain, as indicated by higher locomotor behavior (that is, distance traveled). Moreover, expression of the chemokine receptor Ccr2 and proinflammatory cytokines Il1b and Tnfa in the DRG were significantly reduced to levels similar to those of sham-operated animals. Conclusions This study provides the first evidence in an OA animal model that EGCG significantly slows OA disease progression and exerts a palliative effect. Electronic supplementary material The online version of this article (doi:10.1186/s13075-014-0508-y) contains supplementary material, which is available to authorized users

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    Podmaniczky Frigyes levele Arany Jánosnak

    Get PDF
    Tendinopathy is a common and progressive musculoskeletal disease. Increased apoptosis is an end-stage tendinopathy manifestation, but its contribution to the pathology of the disease is unknown. A previously established in vivo model of fatigue-damage accumulation shows that increased apoptosis is correlated with the severity of induced tendon damage, even in early onset of the disease, supporting its implication in the pathogenesis of the disease. Consequently, this study aimed to determine: (1) whether apoptosis could be inhibited after fatigue damage and (2) whether its inhibition could lead to remodeling of the extracellular matrix (ECM) and pericellular matrix (PCM), to ultimately improve the mechanical properties of fatigue-damaged tendons. The working hypothesis was that, despite the low vascular nature of the tendon, apoptosis would be inhibited, prompting increased production of matrix proteins and restoring tendon mechanical properties. Rats received 2 or 5 d of systemic pan-caspase inhibitor (Q-VD-OPh) or dimethyl sulfoxide (DMSO) carrier control injections starting immediately prior to fatigue loading and were sacrificed at days 7 and 14 post-fatigue-loading. Systemic pan-caspase inhibition for 2 d led to a surprising increase in apoptosis, but inhibition for 5 d increased the population of live cells that could repair the fatigue damage. Further analysis of the 5 d group showed that effective inhibition led to an increased population of cells producing ECM and PCM proteins, although typically in conjunction with oxidative stress markers. Ultimately, inhibition of apoptosis led to further deterioration in mechanical properties of fatigue-damaged tendons

    BMP-12 Treatment of Adult Mesenchymal Stem Cells In Vitro Augments Tendon-Like Tissue Formation and Defect Repair In Vivo

    Get PDF
    We characterized the differentiation of rat bone marrow-derived mesenchymal stem cells (BM-MSCs) into tenocyte-like cells in response to bone morphogenetic protein-12 (BMP-12). BM-MSCs were prepared from Sprague-Dawley rats and cultured as monolayers. Recombinant BMP-12 treatment (10 ng/ml) of BM-MSCs for 12 hours in vitro markedly increased expression of the tenocyte lineage markers scleraxis (Scx) and tenomodulin (Tnmd) over 14 days. Treatment with BMP-12 for a further 12-hour period had no additional effect. Colony formation assays revealed that ∼80% of treated cells and their progeny were Scx- and Tnmd-positive. BM-MSCs seeded in collagen scaffolds and similarly treated with a single dose of BMP-12 also expressed high levels of Scx and Tnmd, as well as type I collagen and tenascin-c. Furthermore, when the treated BM-MSC-seeded scaffolds were implanted into surgically created tendon defects in vivo, robust formation of tendon-like tissue was observed after 21 days as evidenced by increased cell number, elongation and alignment along the tensile axis, greater matrix deposition and the elevated expression of tendon markers. These results indicate that brief stimulation with BMP-12 in vitro is sufficient to induce BM-MSC differentiation into tenocytes, and that this phenotype is sustained in vivo. This strategy of pretreating BM-MSCs with BMP-12 prior to in vivo transplantation may be useful in MSC-based tendon reconstruction or tissue engineering

    A Bisphosphonate With a Low Hydroxyapatite Binding Affinity Prevents Bone Loss in Mice After Ovariectomy and Reverses Rapidly With Treatment Cessation

    Full text link
    Bisphosphonates (BPs) are a mainstay of osteoporosis treatment; however, concerns about bone health based on oversuppression of remodeling remain. Long-term bone remodeling suppression adversely affects bone material properties with microdamage accumulation and reduced fracture toughness in animals and increases in matrix mineralization and atypical femur fractures in patients. Although a “drug holiday” from BPs to restore remodeling and improve bone quality seems reasonable, clinical BPs have long functional half-lives because of their high hydroxyapatite (HAP) binding affinities. This places a practical limit on the reversibility and effectiveness of a drug holiday. BPs with low HAP affinity and strong osteoclast inhibition potentially offer an alternative approach; their antiresorptive effect should reverse rapidly when dosing is discontinued. This study tested this concept using NE-58025, a BP with low HAP affinity and moderate osteoclast inhibition potential. Young adult female C57Bl/6 mice were ovariectomized (OVX) and treated with NE-58025, risedronate, or PBS vehicle for 3 months to test effectiveness in preventing long-term bone loss. Bone microarchitecture, histomorphometry, and whole-bone mechanical properties were assessed. To test reversibility, OVX mice were similarly treated for 3 months, treatment was stopped, and bone was assessed up to 3 months post-treatment. NE-58025 and RIS inhibited long-term OVX-induced bone loss, but NE-58025 antiresorptive effects were more pronounced. Withdrawing NE-58025 treatment led to the rapid onset of trabecular resorption with a 200% increase in osteoclast surface and bone loss within 1 month. Cessation of risedronate treatment did not lead to increases in resorption indices or bone loss. These results show that NE-58025 prevents OVX-induced bone loss, and its effects reverse quickly following cessation treatment in vivo. Low-HAP affinity BPs may have use as reversible, antiresorptive agents with a rapid on/off profile, which may be useful for maintaining bone health with long-term BP treatment

    Role of Nonbehavioral Factors in Adjusting Long Bone Diaphyseal Structure in Free-ranging Pan troglodytes

    Get PDF
    Limb bones deform during locomotion and can resist the deformations by adjusting their shapes. For example, a tubular-shaped diaphysis best resists variably-oriented deformations. As behavioral profiles change during adulthood, patterns of bone deformation may exhibit age trends. Habitat characteristics, e.g., annual rainfall, tree density, and elevation changes, may influence bone deformations by eliciting individual components of behavioral repertoires and suppressing others, or by influencing movements during particular components. Habituated chimpanzee communities provide a unique opportunity to examine these factors because of the availability of morphological data and behavioral observations from known-age individuals inhabiting natural habitats. We evaluated adult femora and humeri of 18 female and 10 male free-ranging chimpanzees (Pan troglodytes) from communities in Gombe (Tanzania), Mahale Mountains (Tanzania), and Taï Forest (Côte d’Ivoire) National Parks. We compare cross sections at several locations (35%, 50%, 65% diaphyseal lengths). Community comparisons highlight different diaphyseal shapes of Taï females relative to Mahale and Gombe females, particularly in humeral diaphyses. Age trends in diaphyseal shapes are consistent with reduced activity levels in general, not only reduced arboreal activity. Age-related bone loss is apparent among community females, but is less striking among males. Community trends in diaphyseal shape are qualitatively consistent with ranked annual rainfall at localities, tree density, and elevation change or ruggedness of terrain. Habitat characteristics may contribute to variation in diaphyseal shape among chimpanzee communities, much like among modern human groups, but verification awaits further rigorous experimental and comparative analyses

    Plasma levels of matrix metalloproteinase-2, -3, -10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: The EURODIAB Prospective Complications Study

    Get PDF
    Impaired regulation of extracellular matrix remodeling by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) may contribute to vascular complications in patients with type 1 diabetes. We investigated associations between plasma MMP-1, -2, -3, -9, -10 and TIMP-1, and cardiovascular disease (CVD) or microvascular complications in type 1 diabetic patients. We also evaluated to which extent these associations could be explained by low-grade inflammation (LGI) or endothelial dysfunction (ED). Methods: 493 type 1 diabetes patients (39.5 ± 9.9 years old, 51% men) from the EURODIAB Prospective Complications Study were included. Linear regression analysis was applied to investigate differences in plasma levels of MMP-1, -2, -3, -9, -10, and TIMP-1 between patients with and without CVD, albuminuria or retinopathy. All analyses were adjusted for age, sex, duration of diabetes, Hba1c and additionally for other cardiovascular risk factors including LGI and ED. Results: Patients with CVD (n = 118) showed significantly higher levels of TIMP-1 [β = 0.32 SD (95%CI: 0.12; 0.52)], but not of MMPs, than patients without CVD (n = 375). Higher plasma levels of MMP-2, MMP-3, MMP-10 and TIMP-1 were associated with higher levels of albuminuria (p-trends were 0.028, 0.004, 0.005 and 0.001, respectively). Severity of retinopathy was significantly associated with higher levels of MMP-2 (p-trend = 0.017). These associations remained significant after further adjustment for markers of LGI and ED. Conclusions: These data support the hypothesis that impaired regulation of matrix remodeling by actions of MMP-2, -3 and-10 and TIMP-1 contributes to the pathogenesis of vascular complications in type 1 diabetes
    corecore