23 research outputs found

    Nonlocal ultrafast demagnetization dynamics of Co/Pt multilayers by optical field enhancement

    Get PDF
    The influence on ultrafast demagnetization dynamics of metallic nano-structured gratings deposited on thin films of magnetic Co/Pt multilayers is investigated by the time-resolved optical Kerr effect. Depending on the polarization of the pump pulse, a pronounced enhancement of the demagnetization amplitude is found. Calculation of the inhomogeneous optical field distribution due to plasmon interaction and time-dependent solutions of the coupled electron, lattice, and spin temperatures in two dimensions show good agreement with the experimental data, as well as giving evidence of non-local demagnetization dynamics due to electron diffusion.BMBF, 05K10KTB, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 1.1: Universelle Experimentierkammer für Streuexperimente mit kohärenten Femtosekunden-Röntgenpulsen Multi Purpose Coherent Scattering Chamber for FLASH and XFEL 'MPscatt

    Experimental evaluation of signal-to-noise in spectro-holography via modified uniformly redundant arrays in the soft x-ray and extreme ultraviolet spectral regime

    Get PDF
    We present dichroic x-ray lensless magnetic imaging by Fourier transform holography with an extended reference scheme via a modified uniformly redundant array (mURA). Holographic images of magnetic domains simultaneously generated by a single pinhole reference as well as by a mURA reference are compared with respect to the signal-to-noise ratio (SNR) as a function of exposure time. We apply this approach for spectro-holographic imaging of ferromagnetic domain patterns in Co/Pt multilayer films. Soft x-rays with wavelengths of 1.59 nm (Co L 3 absorption edge) and 20.8 nm (Co M 2,3 absorption edges) are used for image formation and to generate contrast via x-ray magnetic circular dichroism. For a given exposure time, the mURA-based holography allows to decouple the reconstruction SNR from the spatial resolution. For 1.59 nm wavelength, the reconstruction via the extended reference scheme shows no significant loss of spatial resolution compared to the single pinhole reference. In contrast, at 20.8 nm wavelength the single pinhole reveals some very intricate features which are lost in the image generated by the mURA, although overall a high-quality image is generated. The SNR-advantage of the mURA scheme is most notable when the hologram has to be encoded with few photons, while errors associated with the increased complexity of the reconstruction process reduce the advantage for high-photon-number experiments.BMBF, 05K13KT3, Verbundprojekt 05K2013 - DynaMaX: Messplatz fĂĽr ultraschnelle Dynamik bei BESSY II. Teilprojekt

    Irreversible transformation of ferromagnetic ordered stripe domains in single-shot IR pump - resonant X-ray scattering probe experiments

    Full text link
    The evolution of a magnetic domain structure upon excitation by an intense, femtosecond Infra-Red (IR) laser pulse has been investigated using single-shot based time-resolved resonant X-ray scattering at the X-ray Free Electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 nanoseconds before the magnetization started to recover. After about 5 nanoseconds the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 nanoseconds the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the sample's magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micro-magnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.Comment: 16 pages, 6 figure

    High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength

    Get PDF
    Exploiting x-ray magnetic circular dichroism at the L-edges of 3d transition metals, Fourier transform holography has become a standard technique to investigate magnetic samples with sub-100 nm spatial resolution. Here, magnetic imaging in the 21 nm wavelength regime using M-edge circular dichroism is demonstrated. Ultrafast pulses in this wavelength regime are increasingly available from both laser- and accelerator-driven soft x-ray sources. We explain the adaptations concerning sample preparation and data evaluation compared to conventional holography in the 1 nm wavelength range. We find the correction of the Fourier transform hologram to in-plane Fourier components to be critical for high-quality reconstruction and demonstrate 70 nm spatial resolution in magnetization imaging with this approach.BMBF, 05K10KTB, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 1.1: Universelle Experimentierkammer für Streuexperimente mit kohärenten Femtosekunden-Röntgenpulsen Multi Purpose Coherent Scattering Chamber for FLASH and XFEL 'MPscatt'

    Endstation for ultrafast magnetic scattering experiments at the free-electron laser in Hamburg

    Get PDF
    This content may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This material originally appeared in Review of Scientific Instruments 84, 013906 (2013) and may be found at https://doi.org/10.1063/1.4773543.An endstation for pump–probe small-angle X-ray scattering (SAXS) experiments at the free-electron laser in Hamburg (FLASH) is presented. The endstation houses a solid-state absorber, optical incoupling for pump–probe experiments, time zero measurement, sample chamber, and detection unit. It can be used at all FLASH beamlines in the whole photon energy range offered by FLASH. The capabilities of the setup are demonstrated by showing the results of resonant magnetic SAXS measurements on cobalt-platinum multilayer samples grown on freestanding Si3N4 membranes and pump-laser-induced grid structures in multilayer samples.BMBF, 05K10GU4, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 6: Aufbau einer Plattform für Experimente mit ultimativer Orts- und Zeitauflösung unter Ausnutzung der kohärenten Beugung weicher Röntgenstrahlung an PETRA III und FLASHDFG, 13002249, SFB 668: Magnetismus vom Einzelatom zur NanostrukturDFG, 170620586, SFB 925: Licht-induzierte Dynamik und Kontrolle korrelierter Quantensystem

    The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    Get PDF
    This content may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This material originally appeared in Review of Scientific Instruments 83, 043107 (2012) and may be found at https://doi.org/10.1063/1.3698294.The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480–2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser

    Holographic imaging and time resolved X ray scattering on magnetic domain systems

    No full text
    Die vorliegende Arbeit befasst sich mit Untersuchungen magnetischer Proben mittels Fourier Transformations Holographie FTH und Kleinwinkel Röntgenstreuung SAXS . Für magnetische Proben benötigt man hierzu eine resonante, dichroische Absorptionskante. Die 3d Ferromagnete haben solche Kanten im weichen Röntgenbereich bei jeweils ca. 60 eV und oberhalb von 700 eV. Bislang wurde nur die höherenergetische Resonanz für Orts aufgelöste Abbildungen genutzt. In dem vorgestellten Grundlagenexperiment konnte erstmals gezeigt werden, dass die Bildgebung magnetischer Domänen mittels FTH auch in dem nieder energetischen Regime funktioniert. Die Qualität ist dabei vergleichbar mit Abbildungen an der höheren Absorptionskante. Damit eröffnen sich neue Anwendungsfelder an modernen Röntgenstrahlungsquellen, die nur diesen Energiebereich erreichen können. Das betrifft momentan die Hälfte der weltweit zur Verfügung stehenden Freie Elektronen Röntgenlaser und die meisten kohärenten Laborquellen. Die notwendigen Anpassungen der Experimentier umgebung und Datenauswertung konnten identifiziert werden. Dies trug dazu bei, dass FTH an den M Kanten der 3d Ferromagnete mittlerweile standardmä ig bei weiteren Untersuchungen eingesetzt wird. FTH ist eine verfeinerte Methode der Röntgenstreuung, bei der durch Interferenz der vom Objekt veränderten Welle mit einer Referenzwelle ein Hologramm erzeugt wird. Ohne Referenzwelle erhält man nur das Streubild der Probe, welches trotzdem wertvolle Informationen über die räumliche Anordnung der Streuobjekte enthält. In einem zeitaufgelösten Anrege Abfrage Experiment konnten anhand der Streubilder zu verschiedenen Zeitpunkten, Strukturveränderungen von magnetischen Domänen im Femtosekundenbereich studiert werden. Auf dieser Zeitskala erfahren magnetische Materialien als Antwort auf die optische Anregung eine ultraschnelle Entmagnetisierung. Im Zuge dieser Entmagnetisierung zeigte sich eine Veränderung des Streubildes, die auf eine starke Modifikation der Domänenwände zwischen entgegengesetzt magnetisierten Bereichen schlie en lässt. Mithilfe einer Theorie zum zweidimensionalen Spin Transport in der Probe, konnte eine schlüssige Erklärung sowohl für die räumliche als auch zeitliche Komponente der Veränderungen gefunden werde
    corecore