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Abstract. Exploiting x-ray magnetic circular dichroism at the L-edges of
3d transition metals, Fourier transform holography has become a standard
technique to investigate magnetic samples with sub-100 nm spatial resolution.
Here, magnetic imaging in the 21 nm wavelength regime using M-edge circular
dichroism is demonstrated. Ultrafast pulses in this wavelength regime are
increasingly available from both laser- and accelerator-driven soft x-ray sources.
We explain the adaptations concerning sample preparation and data evaluation
compared to conventional holography in the 1 nm wavelength range. We find the
correction of the Fourier transform hologram to in-plane Fourier components
to be critical for high-quality reconstruction and demonstrate 70 nm spatial
resolution in magnetization imaging with this approach.
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1. Introduction

In the last decade, interference-based techniques using soft and hard x-rays have been
increasingly used to address imaging problems at sub-100 nm spatial resolution. One driving
force for this development is the increasing availability of sources with appreciable coherent
photon flux; a development that is fuelled both by accelerator based sources such as free-electron
lasers (FELs) and high harmonic generation (HHG) sources driven by optical lasers. Fourier
transform holography (FTH) allows solving the phase problem via interference with a reference
wave [1, 2]. FTH at x-ray wavelengths has recently been applied to study problems in different
scientific areas, with a certain emphasis on nanomagnetism [3–7]. Here, the use of x-rays which
are in resonance with corresponding electronic transitions gives rise to strong magnetic contrast
via x-ray magnetic circular dichroism (XMCD).

On the other hand, magnetization dynamics on a sub-picosecond timescale has become
a very rapidly growing research area, including phenomena such as ultrafast demagnetization
and switching processes [8–10]. The underlying mechanisms are under intense debate [11–14]
while at the same time nanoscale structures are expected to exhibit new phenomena [15–17].

Both FELs and HHG sources deliver coherent femtosecond x-ray pulses suitable for
holographic imaging with femtosecond temporal and nanometer spatial resolution [18, 19].
The generation of magnetic contrast for the most prominent and technologically relevant
elements Fe, Co and Ni via XMCD requires wavelengths around 1.6 nm when operating in
resonance with the L-absorption edges and around 20 nm when using resonant scattering at the
M-absorption edges. So far, ultrafast imaging of magnetic nanostructures has only been
performed using XMCD at the Co L3-edge (2p3/2) at the Linac Coherent Light Source [20]. In
fact, the exploitation of soft x-rays at the Fe, Co or Ni M-edges for magnetic imaging via FTH
has not yet been demonstrated at all. Given the fact that HHG sources in this wavelength range
become more prolific and that two FELs worldwide are currently operating in this energy range,
it seems timely to demonstrate that sub-100 nm resolution magnetic imaging via FTH is feasible
in this spectral range. In this work, we demonstrate the use of 20.8 nm wavelength radiation
in resonance with the Co 3p level for high-resolution imaging and describe experimental and
data-treatment details insofar as they differ from the use of FTH in the 1.6 nm regime such as
described in [21].

2. Experimental concepts and details

In comparison to using the L-edge resonances to image nanomagnetic structures, utilizing
3d transition metal M-edges has several implications for the experimental setup as well as
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the data-treatment. In the following, we refer to the Co transition wavelengths of 20.8 nm
(58.9 eV photon energy) and 1.59 nm (778 eV) as prototypical for the 3d transition metal M- and
L-edges, respectively. At the M-edges opposed to the L-edges one generally observes that (i) the
x-ray attenuation length is smaller, (ii) the x-ray reflectivity is higher, (iii) the relative XMCD
contrast is comparable [22], while the absolute scattering cross-section is lower, and (iv) less
electron–hole pairs per photon are generated in a charge-coupled device (CCD) detector.

In order to optimize scattering experiments in transmission geometry, support structures
(e.g. Si3N4 membranes) have to be thinner to avoid unnecessary absorption. At the same
time, the holographic mask can be thinner thus typically allowing for higher resolution lateral
patterning at the same width/depth aspect ratio. The reduced detector counts per photon in
association with small (resonant magnetic) scattering rates and higher reflectivities imply that
it is more difficult to obtain the required signal to detect hologram fringes of small magnetic
features. On the other hand noise due to low-energy diffuse stray light is a more severe issue
as compared to experiments at the L-edges. Considering scattering from d = 100 nm structures
we see that the corresponding scattering angles sin (θ) ≈ λ/d are on the order of 12◦ (M-edge)
and 1◦ (L-edge), respectively, necessitating a different experimental geometry and allowing for
small-angle approximations in the L-edge case. The latter are not applicable when operating
in resonance with the M-edges. Finally, given these different geometries and optical constants,
the influence of refraction at material and vacuum interfaces will have to be considered in the
20.8 nm wavelength case.

The experiment was carried out at the UE112-PGM1 undulator beamline at BESSY II
using circularly polarized radiation tuned to the nominal Co M3 and M2 resonance at 20.8 nm
to maximize XMCD contrast. A 200 nm Al filter upstream of the sample was used to reduce
the third diffraction order radiation residually present from the undulator/monochromator. The
sample consists of a magnetic domain pattern in a [Co(0.8 nm)/Pt(1.4 nm)]11 multilayer film
with perpendicular magnetic anisotropy, sputter deposited on a Si3N4 membrane of 30 nm
thickness. A Ta(2 nm)/Pt(3 nm) seed layer was used for adhesion and an additional 0.6 nm
Pt cap was deposited to prevent oxidation of the magnetic multilayer. Due to the interplay
of magnetostatic energy and exchange energy, a labyrinth pattern of out-of-plane magnetized
domains forms in the magnetic multilayer [23].

From magnetic force microscopy we determine an average domain periodicity of about
140 nm (not shown). To realize an FTH geometry, a gold mask is fabricated on the sample
via focused ion beam lithography as described by Eisebitt et al [21]. Given the reduced x-ray
attenuation length in Au at λ = 20.8 nm as compared to 1.59 nm, the Au mask had a thickness
of 250 nm (as compared to typically 1000 nm at 1.59 nm). Multi-reference FTH imaging [24]
was obtained by placing five reference holes evenly on a 5.5 µm radius around the circular
object aperture, which had a diameter of 2 µm. The reference apertures had nominal diameters
of 60 nm for the three apertures labelled 1, 2 and 5 in the following and 80 nm for references
3 and 4, respectively. Given the thin Si3N4 membrane separating the magnetic multilayer from
the Au mask, special care has to be taken to prevent altering the magnetic properties of the
magnetic system due to Ga+ ions penetrating through the membrane [5]. The object aperture
was fabricated before the magnetic layer deposition to avoid this problem.

This sample–mask structure was placed in the x-ray beam 110 mm downstream of the
beamline focus to provide transversely sufficiently coherent illumination, as sketched in
figure 1(a). A longitudinal coherence length of 2400 λ = 50 µm was provided by adjusting the
beamline monochromator accordingly. This value exceeds the maximum path length difference
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Figure 1. (a) Scheme of the sample and holography experiment. The guard serves
to block stray light while the beamstop covers the directly transmitted beam and
the Airy disk of the object aperture. (b) Raw-data image of a single photon
helicity in a logarithmic scale. Data ranges up to the edges of the CCD while
a variety of artifacts can be identified: dirt on the CCD chip (black spots), diffuse
stray light bypassing the sample holder and guard aperture (left side and right
bottom corner). The left bottom quadrant is shadowed by the sample holder and
thus almost free of stray light. The inset is a magnification of the central region.

of 11 µm in our sample, allowing for coherent scattering to all angles. An additional guard
aperture (diameter 1.5 mm) against diffuse stray light bypassing the sample holder was placed
directly behind our sample.

A 27.6 × 27.6 mm2 large in-vacuum, back-illuminated CCD detector (2048 × 2048 pixels)
was placed 49 mm downstream of the sample to record the interference pattern generated from
the object and reference waves. For more details concerning the connection between reciprocal
space and resolution in FTH we refer to [19].

3. Results and discussion

A hologram for a single incident x-ray polarization is presented in figure 1(b). The logarithmic
intensity scale and chosen colormap serve to emphasize the low-intensity image artifacts
such as produced by residual stray light and dust particles on the CCD chip. A beamstop
mounted in front of the CCD is blocking the highly intense central part of the hologram,
i.e. the unscattered beam and the Airy disc of the object aperture. As we will see below,
robust high-quality imaging is possible from raw data containing such artefacts due to the fact
that the low-frequency background does not disturb the holographic image reconstruction. We
recorded two holograms with opposite helicities (σ + and σ−) of the incident radiation in order
to image the magnetic sample features while suppressing non-magnetic contributions [25].
This difference procedure also improves the reconstruction quality with respect to time and
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Figure 2. (a) Sketch of the scattering geometry for a thin magnetic-domain
sample with a periodicity ξ resulting in elongated reflexes with 2π/ξ -spacing
in Fourier space. The hologram intensity has to be remapped to true in-
plane components. (b) Refraction of the scattered wave at the sample–vacuum
interface. Due to the normal-incidence geometry, the angle of refraction β and
the scattering angle 2 are identical and q

‖
is unaffected by refraction. (c) The

difference image after projection to in-plane coordinates drawn with a linear
intensity scale. The beamstop has been masked.

polarisation independent features and not varying imaging artefacts mentioned above. With
a slightly off-centered detector, the largest momentum transfer collected in all directions is
72 µm−1. The object–reference interference fringes have a period of about 13 pixels on the chip.

The elastic scattering geometry is sketched in figure 2(a). Due to the maximum detected
scattering angle of 23.3◦, a small-angle approximation is not valid. The necessary projection of
the intensity detected by the planar CCD-chip on a sphere of constant absolute momentum
transfer in reciprocal space is accomplished by an inverse gnomonic projection. Such a
projection has been already reported in [18] for a binary transmission sample. However,
for a quasi-2D sample as magnetic domains in a thin magnetic film, the spatial frequencies
generating momentum transfer are purely in-plane. A real-space domain periodicity ξ translates
to 2π/ξ -spaced reflexes in transverse reciprocal space, with elongation in the longitudinal
reciprocal space direction analogous to the crystal truncation rods in surface diffraction [26].
Consequentially, only the in-plane component q‖ of the scattering vector yields the correct
scaling and has to be considered for image formation. An inverse gnomonic projection alone
is insufficient for this task.

In the numerical implementation of the rescaling to q‖-coordinates, the measured scattering
intensities per solid angle have to be conserved. The projected pixel intensities correspond to
the area covered in the detected image, a procedure referred to as exact area imaging. With
our algorithm the intensity before and after the projection deviates by less than 0.1%. The
mapping of the helicity difference intensity (I (σ +) − I (σ−)) to true in-plane Fourier coordinates
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Figure 3. Real part (left) and imaginary part (right) of the object reconstruction
from the difference image after projection and sub-pixel accuracy hologram
centering. The reconstructions labelled 1, 2 and 5 correspond to the smaller,
60 nm references and 3 and 4 to 80 nm reference apertures. The complex
conjugate reconstructions, denoted with *, are centrosymmetric duplicates
and contrast inverted for the imaginary part. The strong signal in the latter
corresponds to enhanced phase contrast due to non-vanishing 1δ. The linear
intensity scale is ranging from −7 × 106 to 7 × 106 arb. units.

is presented in figure 2(c). The image edges now feature a slight curvature and the projected
pixel area covered in the detected image increases nonlinearly with respect to the distance of
the pixel to the optical axis. The beamstop in the center has been masked by a circle blurred
with a Gaussian function.

In the vacuum ultraviolet spectral range, the real part of the refractive index is usually
significantly deviating from unity. Hence, an influence on the hologram by the refraction of
the scattered radiation at the sample interfaces has to be considered in general. At a planar
interface between two media, a wave with incident wave vector k and incident angle α with
respect to the sample surface normal will propagate with k′ and angle β in the second medium.
Due to boundary conditions the components parallel to the interface k‖ and k′

‖
have to be equal,

leading to an alternative notation of Snell’s law: |k| sin α = |k′
| sin β. The refracted wave vector

k′ is coincident with the scattering vector kout and according to the normal incidence geometry
in our experiment, the angle of refraction is identical to the scattering angle β = 2. Thus, the
q‖-component of the detected scattering vector is not affected by refraction. As a result, the
projection to in-plane Fourier coordinates of the scattering vector outlined above, already takes
care of refraction corrections in the case of a normal-incidence geometry.

The final reconstruction from the difference hologram corrected to q‖-space is shown in
figure 3 with the real and imaginary part. The hologram was centered with subpixel resolution
by multiplying the complex reconstruction matrix with a plane wave [5]. A reconstruction of the
object region and the complex conjugate twin image (denoted with an asterisk) is clearly visible,
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each pair generated by one of the five references. These holographic reconstructions are located
around the object autocorrelation in the image center. Note that hardly any ringing artifacts
are visible at sharp features such as the object aperture. The bright dots between the object
reconstructions arising from reference–reference correlations are particularly good indicators in
this respect. Missing or inadequate q‖-projection will result in ringing features in addition to
deteriorating the reconstruction quality in the field of view within the object aperture.

The black and white areas in the circular field of view represent magnetic domains with
an orientation of the magnetization M to be either parallel or antiparallel to the sample normal.
The magnetic domain pattern manifests itself in the real as well as in the imaginary part of
the reconstruction. The real part is centrosymmetric, with all object reconstructions and twin
images showing positive or negative intensity in the same regions respectively. As expected, the
imaginary part shows a contrast inversion for the complex conjugate twin images.

In fact, the image contrast observed in the imaginary part is stronger as compared to the
real part, indicating a significant phase shifting fraction of the refractive index [4]. The observed
ratio of the magnetic contrast in the real and imaginary part is in line with measurements of the
magneto-optical constants 1β, 1δ at the 3p levels of cobalt [22]. As pointed out in [4] for
holography at the L-edge energies, it might be advantageous to exploit phase contrast imaging
by tuning the photon energy below the absorption resonance to avoid strong beam attenuation.
This advantage will be even bigger at M-edge energies due to enhanced absorption in the
sample.

Each of the five image reconstructions allows for an unambiguous determination of the
domain pattern with up or down magnetized regions. From the line scan presented in figure 4(c)
we estimate the spatial resolution to be better than 70 nm. Given the fact, that on one hand slight
high pass-filtering is present due to the use of a central beamstop and that the domain walls
between up and down magnetized domains can be expected to be several nanometers in width,
a more precise determination of the spatial resolution is difficult. We note however, that very
narrow domains appearing with a width of about 60 nm in the reconstruction can be resolved
(arrow in figure 4(b)).

For the purposes of destructive single-shot imaging at FEL sources, one has to consider
the achievable image quality from a single helicity image as shown in figure 4(b). In contrast
to the difference hologram procedure, a CCD dark file was now subtracted. Strong intensity
modulations around the autocorrelation in the center of the reconstruction required a flattening
of the whole hologram with a two-dimensional Gaussian function of 11 µm−1 width.

The information from the real and imaginary parts for one individual reconstruction can
be merged by rotating the complex values to the real axis. A complex rotation by 46◦ and
25◦ applied to the reconstructions shown in figures 4(a) and (b) respectively, maximized the
contrast in this fashion. The blue (a) and red (b) line mark the position of a line scan plotted
in figure 4(c) to illustrate the spatial resolution for the difference and single-helicity image.
The largest scattering angle recorded in every direction around the optical axis (white circle
in figure 1(b)) translates into a resolution of 87 nm. In addition higher momentum transfer
data is recorded outside of this circle on the CCD, with the largest scattering angle of 23.3◦

corresponding to a diffraction-limited resolution of 51 nm. As we clearly resolve the width
of single magnetic domains including the particularly narrow domain marked by the arrow in
figure 3(b) we determine our resolution to be at least 70 nm also in the single-helicity case of
relevance for single-shot imaging at FELs.
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Figure 4. (a) Real part of the difference image reconstruction from reference 3
and (b) single circular polarization image reconstruction from reference 5 plotted
in a linear scale. In (a) and (b) the complex values have been rotated to the real
part. The intensity scales linearly from −7 × 106 to 7 × 106 arb. units for both
images. The blue and red lines indicate the corresponding sections plotted in
(c). The sampling distance is 18.4 nm after zero-padding the hologram matrix to
4096 × 4096 pixels.

From beamline parameters and the acceptance angle of our holographic mask downstream
of the beamline focus, we estimate a total x-ray dose of 4 × 1010 photons µm−2 during the
exposure time. Given an FEL output of about 1012 photons per pulse, it should be possible
to record a hologram with comparable image statistics in one single shot at an FEL. Here,
no transverse coherence filtering is required and the natural bandwidth is sufficient for
resonant scattering at the M-edges of 3d transition metals. We note, however, that circularly
polarized radiation is necessary to image domains magnetized along the direction of the beam.
While this is not an issue for FELs with elliptical undulators [27], the additional polarizer
required at FELs with planar undulators or typical HHG sources will lead to a reduction of
the incident photon flux for such sample systems [28, 29]. As x-ray FELs operating with
intrinsically circularly polarized radiation currently do reach wavelengths corresponding to the
3d transition metal M-edges while the respective L-edges are yet inaccessible, our results on
M-edge FTH imaging may be considered of particular interest. Nonlinear effects leading to a
breakdown of the resonant scattering cross-section, as reported recently [30], may potentially
be mitigated in the attosecond regime accessible by HHG sources and possibly by FELs in the
future [31, 32].

4. Conclusion

In conclusion we have demonstrated FTH in the 60 eV wavelength regime with equal quality
to images recorded at the transition metal L-edges around 780 eV. To obtain high-quality
images of two dimensional samples such as magnetic thin films, it is crucial to transform the
measured intensity pattern into a hologram in q‖-coordinates. This procedure does not only
correct for Ewald’s sphere curvature, but at the same time accounts for refraction effects in
normal-incidence geometry. High-quality images are also obtainable with a single-helicity
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measurement, allowing for single-shot experiments. We achieved a diffraction-limited res-
olution below 70 nm and expect future experiments at FEL or HHG sources operating in
this wavelength regime to be able to take advantage of this approach in order to combine
sub-100 nm spatial resolution with sub-picosecond temporal resolution.
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