4,806 research outputs found

    Environmental Dependence of the Fundamental Plane of Galaxy Clusters

    Full text link
    Galaxy clusters approximate a planar (FP) distribution in a three-dimensional parameter space which can be characterized by optical luminosity, half-light radius, and X-ray luminosity. Using a high-quality catalog of cluster redshifts, we find the nearest neighbor cluster for those common to an FP study and the cluster catalog. Examining scatter about the FP, we find 99.2% confidence that it is dependent on nearest neighbor distance. Our study of X-Ray clusters finds that those with high central gas densities are systematically closer to neighbor clusters. If we combine results here with those of Fritsch and Buchert, we find an explanation for some of our previous conclusions: Clusters in close proximity to other clusters are more likely to have massive cooling flows because they are more relaxed and have higher central gas densities.Comment: Accepted for publication in Astrophysical Journal Letters. Moderate revisions, including more statistical analysis and discussion. Latex, 7 page

    Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model

    Get PDF
    This study describes the coupling of the dynamic global vegetation model (DGVM), Lund–Potsdam–Jena Model for managed land (LPJmL), with the general circulation model (GCM), Simplified Parameterizations primitivE Equation DYnamics model (SPEEDY), to study the feedbacks between land-use change and natural vegetation dynamics and climate during the 20th century. We show that anthropogenic land-use change had a stronger effect on climate than the natural vegetation's response to climate change (e.g. boreal greening). Changes in surface albedo are an important driver of the climate's response; but, especially in the (sub)tropics, changes in evapotranspiration and the corresponding changes in latent heat flux and cloud formation can be of equal importance in the opposite direction. Our study emphasizes that implementing dynamic vegetation into climate models is essential, especially at regional scales: the dynamic response of natural vegetation significantly alters the climate change that is driven by increased atmospheric greenhouse gas concentrations and anthropogenic land-use chang

    Some photometer results obtained on the NASA 1969 Airborne Auroral Expedition

    Get PDF
    The spectral features measured by a photometer onboard the Convair 990 Galileo, during the Auroral Expedition are given in tables. The measurements given cover flights 3 to 15

    Numerical Simulations of Dynamos Generated in Spherical Couette Flows

    Get PDF
    We numerically investigate the efficiency of a spherical Couette flow at generating a self-sustained magnetic field. No dynamo action occurs for axisymmetric flow while we always found a dynamo when non-axisymmetric hydrodynamical instabilities are excited. Without rotation of the outer sphere, typical critical magnetic Reynolds numbers RmcRm_c are of the order of a few thousands. They increase as the mechanical forcing imposed by the inner core on the flow increases (Reynolds number ReRe). Namely, no dynamo is found if the magnetic Prandtl number Pm=Rm/RePm=Rm/Re is less than a critical value Pmc1Pm_c\sim 1. Oscillating quadrupolar dynamos are present in the vicinity of the dynamo onset. Saturated magnetic fields obtained in supercritical regimes (either Re>2RecRe>2 Re_c or Pm>2PmcPm>2Pm_c) correspond to the equipartition between magnetic and kinetic energies. A global rotation of the system (Ekman numbers E=103,104E=10^{-3}, 10^{-4}) yields to a slight decrease (factor 2) of the critical magnetic Prandtl number, but we find a peculiar regime where dynamo action may be obtained for relatively low magnetic Reynolds numbers (Rmc300Rm_c\sim 300). In this dynamical regime (Rossby number Ro1Ro\sim -1, spheres in opposite direction) at a moderate Ekman number (E=103E=10^{-3}), a enhanced shear layer around the inner core might explain the decrease of the dynamo threshold. For lower EE (E=104E=10^{-4}) this internal shear layer becomes unstable, leading to small scales fluctuations, and the favorable dynamo regime is lost. We also model the effect of ferromagnetic boundary conditions. Their presence have only a small impact on the dynamo onset but clearly enhance the saturated magnetic field in the ferromagnetic parts. Implications for experimental studies are discussed

    Program on Earth Observation Data Management Systems (EODMS)

    Get PDF
    An assessment was made of the needs of a group of potential users of satellite remotely sensed data (state, regional, and local agencies) involved in natural resources management in five states, and alternative data management systems to satisfy these needs are outlined. Tasks described include: (1) a comprehensive data needs analysis of state and local users; (2) the design of remote sensing-derivable information products that serve priority state and local data needs; (3) a cost and performance analysis of alternative processing centers for producing these products; (4) an assessment of the impacts of policy, regulation and government structure on implementing large-scale use of remote sensing technology in this community of users; and (5) the elaboration of alternative institutional arrangements for operational Earth Observation Data Management Systems (EODMS). It is concluded that an operational EODMS will be of most use to state, regional, and local agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products

    Réalisation d'un dispositif expérimental pour l'étude des réactions de captures radiatives induites sur le lithium

    No full text
    Le dispositif décrit consiste en un évaporateur de lithium et un « vobulateur de position de cible ». L'évaporateur nous permet de préparer in situ des cibles exemptes de contaminations. Le « vobulateur » fait décrire à la cible une courbe de Lissajous par rapport au faisceau afin d'éviter la surchauffe de la cible

    Planar Laser Induced Fluorescence Mapping of a Carbon Laser Produced Plasma

    Full text link
    We present measurements of ion velocity distribution profiles obtained by laser induced fluorescence (LIF) on an explosive laser produced plasma (LPP). The spatio-temporal evolution of the resulting carbon ion velocity distribution was mapped by scanning through the Doppler-shifted absorption wavelengths using a tunable, diode-pumped laser. The acquisition of this data was facilitated by the high repetition rate capability of the ablation laser (1 Hz) which allowed the accumulation of thousand of laser shots in short experimental times. By varying the intensity of the LIF beam, we were able to explore the effects of fluorescence power against laser irradiance in the context of evaluating the saturation versus the non-saturation regime. The small beam size of the LIF beam led to high spatial resolution of the measurement compared to other ion velocity distribution measurement techniques, while the fast-gated operation mode of the camera detector enabled the measurement of the relevant electron transitions
    corecore