96 research outputs found

    Position dependent velocity profiles in granular avalanches

    Get PDF
    We present velocity profile measurements in granular avalanches flowing down a flat chute with wide rectangular cross section. The flow is recorded through a transparent side-wall by a high-speed camera, which is able to capture 1,825 pictures in a second. Due to the high frame rate of the camera, several flow features can be observed. Quantitative statements can be made by analysing the images with a pattern matching algorithm. This provides us with flow-normal velocity profiles with a very high temporal and spatial resolution. We find that even on flat surfaces, velocity profiles are strongly changing through the flow and for the range of investigated chute angles (from 26° to 36°) clear trends can be recognised. In the head of the avalanche the velocity is highest, decreasing continuously over the length of the avalanche. Thus, the investigated granular avalanches stretch through the flow. The experimental method allows us to study the evolution of characteristic flow properties such as depth averaged velocity, slip velocity, surface velocity, shear rates or flow depth. Side-wall friction effects are estimate

    Density variations in dry granular avalanches

    Get PDF
    Dry granular avalanches exhibit bulk density variations. Understanding the physical mechanisms behind these density variations is especially important in the study of geophysical flows such as snow and rock avalanches. We performed small-scale chute experiments with glass beads to investigate how bulk density changes, measuring velocity profiles, flow height and basal normal stress in an Eulerian measurement frame. The chute inclination and the starting volume of glass beads were systematically varied. From the flow height and basal normal stress data, we could compute the depth-averaged density at the measurement location during the passing of the avalanches. We observed that the depth-averaged density is not constant, varying with chute inclination and starting volume. Furthermore, the depth-averaged density varies from the head to the tail within a single avalanche. We model changes in density by accounting for the energy associated with the velocity fluctuations of the grains, the density and the velocity fluctuations being related by the constitutive relation for the normal stress. We propose expressions for the conduction and decay coefficients of the fluctuation energy which allow us to model the observed density variations in the experiment

    Effects of topography on dynamics and mass loss of lake-terminating glaciers in southern Patagonia

    Get PDF
    Calving glaciers are highly sensitive to bedrock geometry near their terminus. To understand the mechanisms controlling rapid calving glaciers’ mass loss, we measured the lake topography in front of four lake-terminating glaciers in the southern Patagonian icefield. Using remotely sensed surface elevation data, we calculated flotation height and surface slope and compared those with changes in ice-front position, surface speed and surface elevation. Rapid retreat accompanied by rapid flow acceleration and ice surface steepening was observed at Glaciar Upsala from 2008–2011, and at O'Higgins and Viedma glaciers from 2016–present. Surface lowering in the lower part of Glaciar Upsala reached 30 m a−1 and was 18 m a−1 and 12 m a−1 at O'Higgins and Viedma glaciers, respectively. Near- or super-buoyant conditions were observed prior to these events, leading to gradual flow acceleration due to low effective pressure and decoupling from the bed. The super-buoyant condition and gradual acceleration imply full-thickness buoyant calving, which causes the ice front to retreat from the shallow bedrock topography with substantial flow acceleration. We conclude that the buoyancy force plays an important role in the rapid mass loss of lake-terminating glaciers in southern Patagonia

    Glacial lakes of the Central and Patagonian Andes

    Get PDF
    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65?km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.authorsversionPeer reviewe

    Entire large solutions for semilinear elliptic equations

    Get PDF
    We analyze the semilinear elliptic equation Δu=ρ(x)f(u)\Delta u=\rho(x) f(u), u>0u>0 in RD{\mathbf R}^D (D3)(D\ge3), with a particular emphasis put on the qualitative study of entire large solutions, that is, solutions uu such that limx+u(x)=+\lim_{|x|\rightarrow +\infty}u(x)=+\infty. Assuming that ff satisfies the Keller-Osserman growth assumption and that ρ\rho decays at infinity in a suitable sense, we prove the existence of entire large solutions. We then discuss the more delicate questions of asymptotic behavior at infinity, uniqueness and symmetry of solutions.Comment: Journal of Differential Equations 2012, 28 page

    60 Years of Glacier Elevation and Mass Changes in the Maipo River Basin, Central Andes of Chile

    Get PDF
    Glaciers in the central Andes of Chile are fundamental freshwater sources for ecosystems and communities. Overall, glaciers in this region have shown continuous recession and down-wasting, but long-term glacier mass balance studies providing precise estimates of these changes are scarce. Here, we present the first long-term (1955–2013/2015), region-specific glacier elevation and mass change estimates for the Maipo River Basin, from which the densely populated metropolitan region of Chile obtains most of its freshwater supply. We calculated glacier elevation and mass changes using historical topographic maps, Shuttle Radar Topography Mission (SRTM), TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X), and airborne Light Detection and Ranging (LiDAR) digital elevation models. The results indicated a mean regional glacier mass balance of −0.12 ± 0.06 m w.e.a−1, with a total mass loss of 2.43 ± 0.26 Gt for the Maipo River Basin between 1955–2013. The most negative glacier mass balance was the Olivares sub-basin, with a mean value of −0.29 ± 0.07 m w.e.a−1. We observed spatially heterogeneous glacier elevation and mass changes between 1955 and 2000, and more negative values between 2000 and 2013, with an acceleration in ice thinning rates starting in 2010, which coincides with the severe drought. Our results provide key information to improve glaciological and hydrological projections in a region where water resources are under pressure
    corecore