1,030 research outputs found
Low-energy electrodynamics of superconducting diamond
Heavily-boron-doped diamond films become superconducting with critical
temperatures well above 4 K. Here we first measure the reflectivity of
such a film down to 5 cm, by also using Coherent Synchrotron Radiation.
We thus determine the optical gap, the field penetration depth, the range of
action of the Ferrell-Glover-Tinkham sum rule, and the electron-phonon spectral
function. We conclude that diamond behaves as a dirty BCS superconductor.Comment: 4 pages including 3 figure
Hubble Space Telescope imaging of the CFRS and LDSS redshift surveys - IV. Influence of mergers in the evolution of faint field galaxies from z~1
HST images of a sample of 285 galaxies with measured z from the CFRS and
Autofib-LDSS redshift surveys are analysed to derive the evolution of the
merger fraction out to z~1. We have performed visual and machine-based merger
identifications, as well as counts of bright pairs of galaxies with magnitude
differences less than 1.5 mag. We find that the pair fraction increases with z,
with up to ~20% of the galaxies being in physical pairs at z~0.75-1. We derive
a merger fraction varying with z as (1+z)^{3.2 +/- 0.6}, after correction for
line-of-sight contamination, in excellent agreement with the merger fraction
derived from the visual classification of mergers for which m = 3.4 +/- 0.6.
After correcting for seeing effects on the ground-based selection of survey
galaxies, we conclude that the pair fraction evolves as (1+z)^{2.7 +/- 0.6}.
This implies that an average L* galaxy will have undergone 0.8 to 1.8 merger
events from z=1 to 0, with 0.5 to 1.2 merger events occuring in a 2 Gyr time
span at z~0.9. This result is consistent with predictions from semi-analytical
models of galaxy formation. From the simple co-addition of the observed
luminosities of the galaxies in pairs, physical mergers are computed to lead to
a brightening of 0.5 mag for each pair on average, and a boost in star
formation rate of a factor of 2, as derived from the average [O II] equivalent
widths. Mergers of galaxies are therefore contributing significantly to the
evolution of both the luminosity function and luminosity density of the
Universe out to z~1.Comment: 14 pages, 6 PS figures included. Accepted for publication in MNRA
Six more quasars at redshift 6 discovered by the Canada-France High-z Quasar Survey
We present imaging and spectroscopic observations for six quasars at z>5.9
discovered by the Canada-France High-z Quasar Survey (CFHQS). The CFHQS
contains sub-surveys with a range of flux and area combinations to sample a
wide range of quasar luminosities at z~6. The new quasars have luminosities 10
to 75 times lower than the most luminous SDSS quasars at this redshift. The
least luminous quasar, CFHQS J0216-0455 at z=6.01, has absolute magnitude
M_1450=-22.21, well below the likely break in the luminosity function. This
quasar is not detected in a deep XMM-Newton survey showing that optical
selection is still a very efficient tool for finding high redshift quasars.Comment: 7 pages, 4 figures, AJ, in pres
Multiscale Photon Based In Situ and Operando Spectroscopies in Time and Energy Landscapes
Following catalytic reactions, in situ and operando are now the focus of a number of dedicated experiments at light sources which have been developed to track the electronic and molecular structural dynamics of catalysts. The challenges for this goal are two fold first, the development of spectroscopic tools in the energy domain and time domain is required. The photocatalytic processes have early dynamics of tens of femtoseconds, while further reaction takes seconds, minutes, and even hours. Second, a combination of tools to probe processes not only in solids, but also in solutions and at interfaces, is now needed. In this special issue, we present recent developments at the synchrotron facility BESSY II using photon energy from the infrared and extreme ultraviolet up to the soft X ray regime for in situ and operando applications addressing these two major challenges. As this work is a result of contributions from several groups, each section will present the group s activities and related team members involve
Vibrational signature of hydrated protons confined in MXene interlayers
The hydration structure of protons has been studied for decades in bulk water and protonated clusters due to its importance but has remained elusive in planar confined environments. Two dimensional 2D transition metal carbides known as MXenes show extreme capacitance in protic electrolytes, which has attracted attention in the energy storage field. We report here that discrete vibrational modes related to protons intercalated in the 2D slits between Ti3C2Tx MXene layers can be detected using operando infrared spectroscopy. The origin of these modes, not observed for protons in bulk water, is attributed to protons with reduced coordination number in confinement based on Density Functional Theory calculations. This study therefore demonstrates a useful tool for the characterization of chemical species under 2D confinemen
- …