88 research outputs found

    Surface and implantation effects on p-n junctions

    Get PDF
    The contribution of the graded region of implanted p-n junctions is analyzed using an exponential profile. Though previously neglected, it was recently shown that this contribution to the saturation current of HgCdTe diodes is significant. Assuming a dominant Auger recombination, an analytical solution to the continuity equation is obtained. An expression for the current generation by the graded region is presented for both ohmic and reflecting boundary conditions. A revised condition for a wide region is derived. When the region is narrow, the current differs drastically from that of the zero-gradient case. The effects of the junction depth and the substrate and surface concentrations on the current are investigated. It is shown that the reverse current does not saturate

    Two Carrier Analysis of Persistent Photoconductivity in Modulation-Doped Structures

    Get PDF
    A simultaneous fit of Hall and conductivity data gives quantitative results on the carrier concentration and mobility in both the quantum well and the parallel conduction channel. In this study this method was applied to reveal several new findings on the effect of persistent photoconductivity (PPC) on free-carrier concentrations and mobilities. The increase in the two-dimensional electron-gas (2DEG) concentration is significantly smaller than the apparent one derived from single carrier analysis of the Hall coefficient. In the two types of structures investigated, delta doped and continuously doped barrier, the apparent concentration almost doubles following illumination, while analysis reveals an increase of about 20% in the 2DEG. The effect of PPC on mobility depends on the structure. For the sample with a continuously doped barrier the mobility in the quantum well more than doubles. This increase is attributed to the effective screening of the ionized donors by the large electron concentration in the barrier. In the delta doped barrier sample the mobility is reduced by almost a factor of 2. This decrease is probably caused by strong coupling between the two wells, as is demonstrated by self-consistent analysis

    Subband Quantum Scattering Times for Algaas/GaAs Obtained Using Digital Filtering

    Get PDF
    In this study we investigate both the transport and quantum scattering times as a function of the carrier concentration for a modulation doped Al(0.3)Ga(0.7)As/GaAs structure. Carriers in the well are generated as a result of the persistent photoconductivity effect. When more than one subband becomes populated, digital filtering is used to separate the components for each of the excited subbands. We find that the quantum scattering time for the ground subband increases initially as the carrier concentration is increased. However, once the second subband becomes populated, the ground subband scattering time begins to decrease. The quantum scattering time for the excited subband is also observed to decrease as the concentration is increased. From the ratio of the transport and quantum scattering times, it is seen that the transport in the well becomes more isotropic also as the concentration is increased

    Magnetotransport in a pseudomorphic GaAs/GaInAs/GaAlAs heterostructure with a Si delta-doping layer

    Full text link
    Magnetotransport properties of a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure are investigated in pulsed magnetic fields up to 50 T and at temperatures of T=1.4 K and 4.2 K. The structure studied consists of a Si delta-layer parallel to a Ga0.8In0.2As quantum well (QW). The dark electron density of the structure is n_e=1.67x 10^16 m^-2. By illumination the density can be increased up to a factor of 4; this way the second subband in the Ga0.8In0.2As QW can become populated as well as the Si delta-layer. The presence of electrons in the delta-layer results in drastic changes in the transport data, especially at magnetic fields beyond 30 T. The phenomena observed are interpreted as: 1) magnetic freeze-out of carriers in the delta-layer when a low density of electrons is present in the delta-layer, and 2) quantization of the electron motion in the two dimensional electron gases in both the Ga0.8In0.2As QW and the Si delta-layer in the case of high densities. These conclusions are corroborated by the numerical results of our theoretical model. We obtain a satisfactory agreement between model and experiment.Comment: 23 pages, RevTex, 11 Postscript figures (accepted for Phys. Rev. B

    Geospatial analysis of condom availability and accessibility in urban Malawi

    No full text
    PRIFPRI3; C Improving markets and tradeMTI

    Disturbance Observer-Based Voltage Regulation of Current-Mode-Boost-Converter-Interfaced Photovoltaic Generator

    No full text
    corecore