2,102 research outputs found

    Influence of Hydrodynamic Interactions on the Kinetics of Colloidal Particle's Adsorption

    Full text link
    The kinetics of irreversible adsorption of spherical particles onto a flat surface is theoretically studied. Previous models, in which hydrodynamic interactions were disregarded, predicted a power-law behavior t−2/3t^{-2/3} for the time dependence of the coverage of the surface near saturation. Experiments, however, are in agreement with a power-law behavior of the form t−1/2t^{-1/2}. We outline that, when hydrodynamic interactions are considered, the assymptotic behavior is found to be compatible with the experimental results in a wide region near saturation.Comment: 4 pages, 1 figures, Phys. Rev. Lett. (in press

    Quantum Drag Forces on a Sphere Moving Through a Rarefied Gas

    Full text link
    As an application of quantum fluid mechanics, we consider the drag force exerted on a sphere by an ultra-dilute gas. Quantum mechanical diffraction scattering theory enters in that regime wherein the mean free path of a molecule in the gas is large compared with the sphere radius. The drag force is computed in a model specified by the ``sticking fraction'' of events in which a gaseous molecule is adsorbed by the spherical surface. Classical inelastic scattering theory is shown to be inadequate for physically reasonable sticking fraction values. The quantum mechanical scattering drag force is exhibited theoretically and compared with experimental data.Comment: 5 pages no figure

    Astrophysical Supercomputing with GPUs: Critical Decisions for Early Adopters

    Full text link
    General purpose computing on graphics processing units (GPGPU) is dramatically changing the landscape of high performance computing in astronomy. In this paper, we identify and investigate several key decision areas, with a goal of simplyfing the early adoption of GPGPU in astronomy. We consider the merits of OpenCL as an open standard in order to reduce risks associated with coding in a native, vendor-specific programming environment, and present a GPU programming philosophy based on using brute force solutions. We assert that effective use of new GPU-based supercomputing facilities will require a change in approach from astronomers. This will likely include improved programming training, an increased need for software development best-practice through the use of profiling and related optimisation tools, and a greater reliance on third-party code libraries. As with any new technology, those willing to take the risks, and make the investment of time and effort to become early adopters of GPGPU in astronomy, stand to reap great benefits.Comment: 13 pages, 5 figures, accepted for publication in PAS

    Polarization Evolution in Strong Magnetic Fields

    Get PDF
    Extremely strong magnetic fields change the vacuum index of refraction. Although this polarization dependent effect is small for typical neutron stars, it is large enough to decouple the polarization states of photons traveling within the field. The photon states evolve adiabatically and follow the changing magnetic field direction. The combination of a rotating magnetosphere and a frequency dependent state decoupling predicts polarization phase lags between different wave bands, if the emission process takes place well within the light cylinder. This QED effect may allow observations to distinguish between different pulsar emission mechanisms and to reconstruct the structure of the magnetosphere.Comment: 22 pages, 10 figures, accepted for publication in MNRA

    Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars II: Finite Temperature Effects

    Full text link
    We present numerical calculations of the equation of state for dense matter in high magnetic fields, using a temperature dependent Thomas-Fermi theory with a magnetic field that takes all Landau levels into account. Free energies for atoms and matter are also calculated as well as profiles of the electron density as a function of distance from the atomic nucleus for representative values of the magnetic field strength, total matter density, and temperature. The Landau shell structure, which is so prominent in cold dense matter in high magnetic fields, is still clearly present at finite temperature as long as it is less than approximately one tenth of the cyclotron energy. This structure is reflected in an oscillatory behaviour of the equation of state and other thermodynamic properties of dense matter and hence also in profiles of the density and pressure as functions of depth in the surface layers of magnetic neutron stars. These oscillations are completely smoothed out by thermal effects at temperatures of the order of the cyclotron energy or higher.Comment: 37 pages, 17 figures included, submitted to Ap

    Epidemiology of post-neonatal bacterial meningitis in Cape Town children

    Get PDF
    CITATION: Hussey, G. 1997. Epidemiology of post-neonatal bacterial meningitis in Cape Town children. South African Medical Journal, 87(1):51-56.The original publication is available at http://www.samj.org.zaBacterial meningitis is a major cause of childhood morbidity and mortality in South Africa. However, comprehensive regional or national epidemiological data, essential for rational public health interventions, are lacking. The purpose of this 1-year prospective study, from 1 August 1991 to 31 July 1992, was to define the magnitude of the problem of childhood bacterial meningitis in Cape Town. The study group consisted of all children, aged > 1 month to < 74 years, who presented with proven bacterial meningitis at all the hospitals in the Cape Town metropolitan area. During the year 201 cases were identified: 101 (50.2%) were due to Neisseria meningitidis, 74 (36.8%) were due to Haemophilus influenzae and 26 (12.9%) were due to Streptococcus pneumoniae. The overall incidence rate (95% confidence interval) for children less than 14 years, 5 years and 1 year was 34 (30 - 40), 76 (65 - 88) and 257 (213 - 309) per 100 000 children, respectively. The rate was highest in black infants, 416 (316 - 545)/100 000. This was 2 times greater than the rate in coloured infants and about 4.5 times greater than the rate in white infants. The median age of all the children was 10 months. The ages of children with haemophilus and pneumococcal meningitis were similar, 9 and 7.5 months respectively (P = 0.43), while children with meningococcal meningitis were significantly cider (22 months) than the others (P < 0.01). The overall case fatality rate was 5%, and 12.9% of survivors had significant neurological sequelae (disability) on discharge.Publisher’s versio

    Mechanism Design in Social Networks

    Get PDF
    This paper studies an auction design problem for a seller to sell a commodity in a social network, where each individual (the seller or a buyer) can only communicate with her neighbors. The challenge to the seller is to design a mechanism to incentivize the buyers, who are aware of the auction, to further propagate the information to their neighbors so that more buyers will participate in the auction and hence, the seller will be able to make a higher revenue. We propose a novel auction mechanism, called information diffusion mechanism (IDM), which incentivizes the buyers to not only truthfully report their valuations on the commodity to the seller, but also further propagate the auction information to all their neighbors. In comparison, the direct extension of the well-known Vickrey-Clarke-Groves (VCG) mechanism in social networks can also incentivize the information diffusion, but it will decrease the seller's revenue or even lead to a deficit sometimes. The formalization of the problem has not yet been addressed in the literature of mechanism design and our solution is very significant in the presence of large-scale online social networks.Comment: In The Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, US, 04-09 Feb 201

    THERMAL RADIATION FROM MAGNETIZED NEUTRON STARS: A look at the Surface of a Neutron Star.

    Full text link
    Surface thermal emission has been detected by ROSAT from four nearby young neutron stars. Assuming black body emission, the significant pulsations of the observed light curves can be interpreted as due to large surface temperature differences produced by the effect of the crustal magnetic field on the flow of heat from the hot interior toward the cooler surface. However, the energy dependence of the modulation observed in Geminga is incompatible with blackbody emission: this effect will give us a strong constraint on models of the neutron star surface.Comment: 10 pages. tar-compressed and uuencoded postcript file. talk given at the `Jubilee Gamow Seminar', St. Petersburg, Sept. 1994
    • …
    corecore