426 research outputs found
Breaking the PPSZ Barrier for Unique 3-SAT
The PPSZ algorithm by Paturi, Pudl\'ak, Saks, and Zane (FOCS 1998) is the
fastest known algorithm for (Promise) Unique k-SAT. We give an improved
algorithm with exponentially faster bounds for Unique 3-SAT.
For uniquely satisfiable 3-CNF formulas, we do the following case
distinction: We call a clause critical if exactly one literal is satisfied by
the unique satisfying assignment. If a formula has many critical clauses, we
observe that PPSZ by itself is already faster. If there are only few clauses
allover, we use an algorithm by Wahlstr\"om (ESA 2005) that is faster than PPSZ
in this case. Otherwise we have a formula with few critical and many
non-critical clauses. Non-critical clauses have at least two literals
satisfied; we show how to exploit this to improve PPSZ.Comment: 13 pages; major revision with simplified algorithm but slightly worse
constant
P-Selectivity, Immunity, and the Power of One Bit
We prove that P-sel, the class of all P-selective sets, is EXP-immune, but is
not EXP/1-immune. That is, we prove that some infinite P-selective set has no
infinite EXP-time subset, but we also prove that every infinite P-selective set
has some infinite subset in EXP/1. Informally put, the immunity of P-sel is so
fragile that it is pierced by a single bit of information.
The above claims follow from broader results that we obtain about the
immunity of the P-selective sets. In particular, we prove that for every
recursive function f, P-sel is DTIME(f)-immune. Yet we also prove that P-sel is
not \Pi_2^p/1-immune
MuPix7 - A fast monolithic HV-CMOS pixel chip for Mu3e
The MuPix7 chip is a monolithic HV-CMOS pixel chip, thinned down to 50 \mu m.
It provides continuous self-triggered, non-shuttered readout at rates up to 30
Mhits/chip of 3x3 mm^2 active area and a pixel size of 103x80 \mu m^2. The hit
efficiency depends on the chosen working point. Settings with a power
consumption of 300 mW/cm^2 allow for a hit efficiency >99.5%. A time resolution
of 14.2 ns (Gaussian sigma) is achieved. Latest results from 2016 test beam
campaigns are shown.Comment: Proceedingsfor the PIXEL2016 conference, submitted to JINST A
dangling reference has been removed from this version, no other change
Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms
Stochastic local search algorithms are frequently used to numerically solve
hard combinatorial optimization or decision problems. We give numerical and
approximate analytical descriptions of the dynamics of such algorithms applied
to random satisfiability problems. We find two different dynamical regimes,
depending on the number of constraints per variable: For low constraintness,
the problems are solved efficiently, i.e. in linear time. For higher
constraintness, the solution times become exponential. We observe that the
dynamical behavior is characterized by a fast equilibration and fluctuations
around this equilibrium. If the algorithm runs long enough, an exponentially
rare fluctuation towards a solution appears.Comment: 21 pages, 18 figures, revised version, to app. in PRE (2003
Computational Indistinguishability between Quantum States and Its Cryptographic Application
We introduce a computational problem of distinguishing between two specific
quantum states as a new cryptographic problem to design a quantum cryptographic
scheme that is "secure" against any polynomial-time quantum adversary. Our
problem, QSCDff, is to distinguish between two types of random coset states
with a hidden permutation over the symmetric group of finite degree. This
naturally generalizes the commonly-used distinction problem between two
probability distributions in computational cryptography. As our major
contribution, we show that QSCDff has three properties of cryptographic
interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff
coincides with its worst-case hardness; and (iii) QSCDff is computationally at
least as hard as the graph automorphism problem in the worst case. These
cryptographic properties enable us to construct a quantum public-key
cryptosystem, which is likely to withstand any chosen plaintext attack of a
polynomial-time quantum adversary. We further discuss a generalization of
QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies
on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail
proofs and follow-up of recent wor
Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain
Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (Nâ=â303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (â174âC/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; xâ=â24, yâ=ââ10, zâ=ââ15; F(2,286)â=â8.54, puncorrectedâ=â0.0002; pAlphaSim-correctedâ=â0.002; cluster size kâ=â577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Low Q^2 Jet Production at HERA and Virtual Photon Structure
The transition between photoproduction and deep-inelastic scattering is
investigated in jet production at the HERA ep collider, using data collected by
the H1 experiment. Measurements of the differential inclusive jet
cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the
transverse energy and the pseudorapidity of the jets in the virtual
photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3
< y < 0.6. The interpretation of the results in terms of the structure of the
virtual photon is discussed. The data are best described by QCD calculations
which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
- âŠ