902 research outputs found

    Light-addressable Potentiometric Sensors and Light–addressable Electrodes as a Combined Sensor-and-manipulator Microsystem with High Flexibility

    Get PDF
    AbstractThis work describes the novel combination of the light-addressable electrode (LAE) and the light-addressable potentiometric sensor (LAPS) into a microsystem set-up. Both the LAE as well as the LAPS shares the principle of addressing the active spot by means of a light beam. This enables both systems to manipulate resp. to detect an analyte with a high spatial resolution. Hence, combining both principles into a single set-up enables the active stimulation e.g., by means of electrolysis and a simultaneous observation e.g., the response of an entrapped biological cell by detection of extracellular pH changes. The work will describe the principles of both technologies and the necessary steps to integrate them into a single set-up. Furthermore, examples of application and operation of such systems will be presented

    Parallel Query Evaluation: A New Approach to Complex Object Processing

    Get PDF
    Abstract Complex objects to support non-standard database applications require the use of substantial computing resources because their powerful operations must be performed and maintained in an interactive environment. Since the exploitation of parallelism within such operations seems to be promising, we investigate the principal approaches for processing a query on complex objects (molecules) in parallel. A number of arguments favor methods based on inter-molecule parallelism as against intra-molecule parallelism. Retrieval of molecules may be optimized by multiple storage structures and access paths. Hence, maintenance of such storage redundancy seems to be another good application area to explore the use of parallelism

    Evaluation of hardware architectures for parallel execution of complex database operations

    Get PDF
    Abstract New database applications, primarily in the areas of engineering and knowledge-based systems, refer to complex objects (e.g. representation of a CAD workpiece or a VLSI chip) while performing their tasks. Retrieval, maintenance, and integrity checking of such complex objects consume substantial computing resources which were traditionally used by conventional database management systems in a sequential manner. Rigid performance goals dictated by interactive use and design environments imply new approaches to master the functionality of complex objects under satisfactory time restrictions. Because of the object granularity, the set orientation of the database interface, and the complicated algorithms for object handling, the exploitation of parallelism within such operations seems to be promising. Our main goal is the investigation and evaluation of different hardware architectures and their suitability to efficiently cope with workloads generated by database operations on complex objects. Apparently, employing just a number of processors is not a panacea for our database problem. The sheer horse power of machines does not help very much when data synchronization and event serialization requirements play a major role during object handling. What are the critical hardware architecture properties? How can the existing MIPS be best utilized for the data management functions when processing complex objects? To answer these questions and related issues, we discuss different kinds of architectures combining multiple processors: loosely-, tightly-, and closely-coupled. Furthermore, we consider parallelism at different levels of abstraction: the distribution of (sub-)queries or the decomposition of such queries and their concurrent evaluation at an inter-or intra-object level. Finally, we give some thoughts as to the problems of load control and transaction management

    Divergent drivers of the microbial methane sink in temperate forest and grassland soils

    Get PDF
    Aerated topsoils are important sinks for atmospheric methane (CH4) via oxidation by CH4‐oxidizing bacteria (MOB). However, intensified management of grasslands and forests may reduce the CH4 sink capacity of soils. We investigated the influence of grassland land‐use intensity (150 sites) and forest management type (149 sites) on potential atmospheric CH4 oxidation rates (PMORs) and the abundance and diversity of MOB (with qPCR) in topsoils of three temperate regions in Germany. PMORs measurements in microcosms under defined conditions yielded approximately twice as much CH4 oxidation in forest than in grassland soils. High land‐use intensity of grasslands had a negative effect on PMORs (−40%) in almost all regions and fertilization was the predominant factor of grassland land‐use intensity leading to PMOR reduction by 20%. In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)‐α was the dominant group of MOBs in the forests. In contrast, USC‐γ was absent in more than half of the forest soils but present in almost all grassland soils. USC‐α abundance had a direct positive effect on PMOR in forest, while in grasslands USC‐α and USC‐γ abundance affected PMOR positively with a more pronounced contribution of USC‐γ than USC‐α. Soil bulk density negatively influenced PMOR in both forests and grasslands. We further found that the response of the PMORs to pH, soil texture, soil water holding capacity and organic carbon and nitrogen content differ between temperate forest and grassland soils. pH had no direct effects on PMOR, but indirect ones via the MOB abundances, showing a negative effect on USC‐α, and a positive on USC‐γ abundance. We conclude that reduction in grassland land‐use intensity and afforestation has the potential to increase the CH4 sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659ESFMinistry of Education, Science and Culture of Mecklenburg‐Western PomeraniaPeer Reviewe

    AcDc - A new code for the NLTE spectral analysis of accretion discs: application to the helium CV AM CVn

    Full text link
    We present a recently developed code for detailed NLTE calculations of accretion disc spectra of cataclysmic variables and compact X-ray binaries. Assuming a radial structure of a standard alpha-disc, the disc is divided into concentric rings. For each disc ring the solution of the radiation transfer equation and the structure equations, comprising the hydrostatic and radiative equilibrium, the population of the atomic levels as well as charge and particle conservation, is done self-consistently. Metal-line blanketing and irradiation by the central object are taken into account. As a first application, we show the influence of different disc parameters on the disc spectrum for the helium cataclysmic variable AM CVn.Comment: 7 pages, 11 figures to be published in A&

    Making Gestural Interaction Accessible to Visually Impaired People

    Get PDF
    International audienceAs touch screens become widely spread, making them more accessible to visually impaired people is an important task. Touch displays possess a poor accessibility for visually impaired people. One possibility to make them more accessible without sight is through gestural interaction. Yet, there are still few studies on using gestural interaction for visually impaired people. In this paper we present a comprehensive summary of existing projects investigating accessible gestural interaction. We also highlight the limits of current approaches and propose future working directions. Then, we present the design of an interactive map prototype that includes both a raised-line map overlay and gestural interaction for accessing different types of information (e.g., opening hours, distances). Preliminary results of our project show that basic gestural interaction techniques can be successfully used in interactive maps for visually impaired people

    Controlling discrete quantum walks: coins and intitial states

    Full text link
    In discrete time, coined quantum walks, the coin degrees of freedom offer the potential for a wider range of controls over the evolution of the walk than are available in the continuous time quantum walk. This paper explores some of the possibilities on regular graphs, and also reports periodic behaviour on small cyclic graphs.Comment: 10 (+epsilon) pages, 10 embedded eps figures, typos corrected, references added and updated, corresponds to published version (except figs 5-9 optimised for b&w printing here

    Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    Full text link
    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the ή15N and ή13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δή15N (ή15N plant - ή15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in ή13C in hay and ή15N in both soil and hay between management types, but showed that ή13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δή15N values implied that management types did not substantially differ in nitrogen cycling. Only ή13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice
    • 

    corecore