588 research outputs found

    The Optical Emission from Gamma-ray Quasars

    Full text link
    We present photometric observations of six radio-loud quasars that were detected by the COMPTEL gamma-ray telescope. The data encompasses seven wavebands in the optical and near-infrared. After correction for Galactic extinction, we find a wide range in optical slopes. Two sources are as blue as optically-selected quasars, and are likely to be dominated by the accretion disc emission, while three others show colours consistent with a red synchrotron component. We discuss the properties of the COMPTEL sample of quasars, as well as the implications our observations have for multi-wavelength modelling of gamma-ray quasars.Comment: 12 pages, 3 figures, accepted for publication in P.A.S.A; minor typos correcte

    The MEGA Advanced Compton Telescope Project

    Get PDF
    The goal of the Medium Energy Gamma-ray Astronomy (MEGA) telescope is to improve sensitivity at medium gamma-ray energies (0.4-50 MeV) by at least an order of magnitude over that of COMPTEL. This will be achieved with a new compact design that allows for a very wide field of view, permitting a sensitive all-sky survey and the monitoring of transient and variable sources. The key science objectives for MEGA include the investigation of cosmic high-energy particle accelerators, studies of nucleosynthesis sites using gamma-ray lines, and determination of the large-scale structure of galactic and cosmic diffuse background emission. MEGA records and images gamma-ray events by completely tracking both Compton and pair creation interactions in a tracker of double-sided silicon strip detectors and a calorimeter of CsI crystals able to resolve in three dimensions. We present initial laboratory calibration results from a small prototype MEGA telescope.Comment: 7 pages LaTeX, 5 figures, to appear in New Astronomy Reviews (Proceedings of the Ringberg Workshop "Astronomy with Radioactivities III"

    The COMPTEL instrumental line background

    Get PDF
    The instrumental line background of the Compton telescope COMPTEL onboard the Compton Gamma-Ray Observatory is due to the activation and/or decay of many isotopes. The major components of this background can be attributed to eight individual isotopes, namely 2D, 22Na, 24Na, 28Al, 40K, 52Mn, 57Ni, and 208Tl. The identification of instrumental lines with specific isotopes is based on the line energies as well as on the variation of the event rate with time, cosmic-ray intensity, and deposited radiation dose during passages through the South-Atlantic Anomaly. The characteristic variation of the event rate due to a specific isotope depends on its life-time, orbital parameters such as the altitude of the satellite above Earth, and the solar cycle. A detailed understanding of the background contributions from instrumental lines is crucial at MeV energies for measuring the cosmic diffuse gamma-ray background and for observing gamma-ray line emission in the interstellar medium or from supernovae and their remnants. Procedures to determine the event rate from each background isotope are described, and their average activity in spacecraft materials over the first seven years of the mission is estimated.Comment: accepted for publication in A&A, 22 pages, 21 figure

    Deciphering the Whisper of Volcanoes: Monitoring Velocity Changes at Kamchatka's Klyuchevskoy Group With Fluctuating Noise Fields

    Get PDF
    Volcanic inflation and deflation often precede eruptions and can lead to seismic velocity changes (dv/v dv/vdv/v) in the subsurface. Recently, interferometry on the coda of ambient noise‐cross‐correlation functions yielded encouraging results in detecting these changes at active volcanoes. Here, we analyze seismic data recorded at the Klyuchevskoy Volcanic Group in Kamchatka, Russia, between summer of 2015 and summer of 2016 to study signals related to volcanic activity. However, ubiquitous volcanic tremors introduce distortions in the noise wavefield that cause artifacts in the dv/v dv/vdv/v estimates masking the impact of physical mechanisms. To avoid such instabilities, we propose a new technique called time‐segmented passive image interferometry. In this technique, we employ a hierarchical clustering algorithm to find periods in which the wavefield can be considered stationary. For these periods, we perform separate noise interferometry studies. To further increase the temporal resolution of our results, we use an AI‐driven approach to find stations with similar dv/v dv/vdv/v responses and apply a spatial stack. The impacts of snow load and precipitation dominate the resulting dv/v dv/vdv/v time series, as we demonstrate with the help of a simple model. In February 2016, we observe an abrupt velocity drop due to the M7.2 Zhupanov earthquake. Shortly after, we register a gradual velocity increase of about 0.3% at Bezymianny Volcano coinciding with surface deformation observed using remote sensing techniques. We suggest that the inflation of a shallow reservoir related to the beginning of Bezymianny's 2016/2017 eruptive cycle could have caused this local velocity increase and a decorrelation of the correlation function coda

    Development of an advanced Compton camera with gaseous TPC and scintillator

    Full text link
    A prototype of the MeV gamma-ray imaging camera based on the full reconstruction of the Compton process has been developed. This camera consists of a micro-TPC that is a gaseous Time Projection Chamber (TPC) and scintillation cameras. With the information of the recoil electrons and the scattered gamma-rays, this camera detects the energy and incident direction of each incident gamma-ray. We developed a prototype of the MeV gamma-ray camera with a micro-TPC and a NaI(Tl) scintillator, and succeeded in reconstructing the gamma-rays from 0.3 MeV to 1.3 MeV. Measured angular resolutions of ARM (Angular Resolution Measure) and SPD (Scatter Plane Deviation) for 356 keV gamma-rays were 18∘18^\circ and 35∘35^\circ, respectively.Comment: 4 pages, 5 figures. Proceedings of the 6th International Workshop On Radiation Imaging Detector

    The first COMPTEL Source Catalogue

    Full text link
    The imaging Compton telescope COMPTEL aboard NASA's Compton Gamma-Ray Observatory has opened the MeV gamma-ray band as a new window to astronomy. COMPTEL provided the first complete all-sky survey in the energy range 0.75 to 30 MeV. The catalogue, presented here, is largely restricted to published results. It contains firm as well as marginal detections of continuum and line emitting sources and presents upper limits for various types of objects. The numbers of the most significant detections are 32 for steady sources and 31 for gamma-ray bursters. Among the continuum sources, detected so far, are spin-down pulsars, stellar black-hole candidates, supernova remnants, interstellar clouds, nuclei of active galaxies, gamma-ray bursters, and the Sun during solar flares. Line detections have been made in the light of the 1.809 MeV 26Al line, the 1.157 MeV 44Ti line, the 847 and 1238 keV 56Co lines, and the neutron capture line at 2.223 MeV. For the identification of galactic sources, a modelling of the diffuse galactic emission is essential. Such a modelling at this time does not yet exist at the required degree of accuracy. Therefore, a second COMPTEL source catalogue will be produced after a detailed and accurate modelling of the diffuse interstellar emission has become possible.Comment: 50 pages including 4 figures; accepted for publication in A&A Supplement
    • 

    corecore