175 research outputs found
The Evolutionary History of Vertebrate Adhesion GPCRs and Its Implication on Their Classification
Adhesion G protein-coupled receptors (aGPCRs) form a structurally separate class of
GPCRs with an unresolved evolutionary history and classification. Based on phylogenetic relations
of human aGPCRs, nine families (A–G, L, V) were distinguished. Taking advantage of available
genome data, we determined the aGPCR repertoires in all vertebrate classes. Although most aGPCR
families show a high numerical stability in vertebrate genomes, the full repertoire of family E, F,
and G members appeared only after the fish–tetrapod split. We did not find any evidence for new
aGPCR families in vertebrates which are not present in the human genome. Based on ortholog
sequence alignments, selection analysis clearly indicated two types of tetrapod aGPCRs: (i) aGPCR
under strong purifying selection in tetrapod evolution (families A, B, D, L, V); and (ii) aGPCR with
signatures of positive selection in some tetrapod linages (families C, E, G, F). The alignments of
aGPCRs also allowed for a revised definition of reference positions within the seven-transmembranehelix
domain (relative position numbering scheme). Based on our phylogenetic cluster analysis, we
suggest a revised nomenclature of aGPCRs including their transcript variants. Herein, the former
families E and L are combined to one family (L) and GPR128/ADGRG7 forms a separate family (E).
Furthermore, our analyses provide valuable information about the (patho)physiological relevance of
individual aGPCR members
Latrophilins and Teneurins in Invertebrates: No Love for Each Other?
Transsynaptic connections enabling cell–cell adhesion and cellular communication are a vital part of synapse formation, maintenance and function. A recently discovered interaction between the Adhesion GPCRs Latrophilins and the type II single transmembrane proteins Teneurins at mammalian synapses is vital for synapse formation and dendrite branching. While the understanding of the effects and the molecular interplay of this Latrophilin-Teneurin partnership is not entirely understood, its significance is highlighted by behavioral and neurological phenotypes in various animal models. As both groups of molecules, Latrophilins and Teneurins, are generally highly conserved, have overlapping expression and often similar functions across phyla, it can be speculated that this interaction, which has been proven essential in mammalian systems, also occurs in invertebrates to control shaping of synapses. Knowledge of the generality of this interaction is especially of interest due to its possible involvement in neuropathologies. Further, several invertebrates serve as model organisms for addressing various neurobiological research questions. So far, an interaction of Latrophilins and Teneurins has not been observed in invertebrates, but our knowledge on both groups of molecules is by far not complete. In this review, we give an overview on existing experimental evidence arguing for as well as against a potential Latrophilin-Teneurin interaction beyond mammals. By combining these insights with evolutionary aspects on each of the interaction partners we provide and discuss a comprehensive picture on the functions of both molecules in invertebrates and the likeliness of an evolutionary conservation of their interaction
Luciferase activity under direct ligand-dependent control of a muscarinic acetylcholine receptor
<p>Abstract</p> <p>Background</p> <p>Controlling enzyme activity by ligand binding to a regulatory domain of choice may have many applications e.g. as biosensors and as tools in regulating cellular functions. However, until now only a small number of ligand-binding domains have been successfully linked to enzyme activity. G protein-coupled receptors (GPCR) are capable of recognizing an extraordinary structural variety of extracellular signals including inorganic and organic molecules. Ligand binding to GPCR results in conformational changes involving the transmembrane helices. Here, we assessed whether ligand-induced conformational changes within the GPCR helix bundle can be utilized to control the activity of an integrated enzyme.</p> <p>Results</p> <p>As a proof of principle, we inserted the luciferase amino acid sequence into the third intracellular loop of the M<sub>3 </sub>muscarinic acetylcholine receptor. This fusion protein retained both receptor and enzyme function. Receptor blockers slightly but significantly reduced enzyme activity. By successive deletion mutagenesis the enzyme activity was optimally coupled to ligand-induced conformational helix movements.</p> <p>Conclusion</p> <p>Our results demonstrate that in engineered GPCR-enzyme chimeras, intracellular enzyme activity can be directly controlled by a GPCR serving as the extracellular ligand-binding domain.</p
Reduction in corpora lutea number in obese melanocortin-4-receptor-deficient mice
Obese melanocortin-4-receptor-deficient (MC4R-/-) male mice are reported to have erectile dysfunction, while homozygous MC4R-/- female mice are apparently fertile. A recently established obese mouse strain, carrying an inactivating mutation in the MC4R gene, revealed difficulties in breeding for the homozygous female mice. This prompted us to determine the presence of follicles and corpora lutea (CL) in ovaries of MC4R-/- mice aged 3–6 months in comparison to wild type (MC4R+/+) littermates. Serial sections of formaldehyde-fixed ovaries of mice with vaginal signs of estrus and metestrus were assessed for the number of healthy and regressing follicles and CL. The number of CL, as an estimate for the ovulation rate, decreased to zero during aging in MC4R-/- mice. The number of small- (diameter 100–200 micrometer) and large-sized follicles namely antral follicles (diameter >200 micrometer) were slightly increased in MC4R-/- compared to MC4R+/+ mice. Greater differences were found in very large to cystic follicles, which were more numerous in MC4R-/- mice. The number of regressing antral follicles was higher in the MC4R-/- group compared to the MC4R+/+ group. This was associated with a wide range in the number of collapsed zonae pellucidae as the last remnants of regressed follicles. A conspicuous hypertrophy of the interstitial cells was noted in 6-month-old MC4R-/- mice. In conclusion, cystic follicles and the reduction in CL number point to a decreased ovulation rate in obese MC4R-/- mice
Functional relevance of naturally occurring mutations in adhesion G protein-coupled receptor ADGRD1 (GPR133)
Background: A large number of human inherited and acquired diseases and phenotypes are caused by mutations in G protein-coupled receptors (GPCR). Genome-wide association studies (GWAS) have shown that variations in the ADGRD1 (GPR133) locus are linked with differences in metabolism, human height and heart frequency. ADGRD1 is a Gs protein-coupled receptor belonging to the class of adhesion GPCRs. Results: Analysis of more than 1000 sequenced human genomes revealed approximately 9000 single nucleotide polymorphisms (SNPs) in the human ADGRD1 as listed in public data bases. Approximately 2.4 % of these SNPs are located in exons resulting in 129 non-synonymous SNPs (nsSNPs) at 119 positions of ADGRD1. However, the functional relevance of those variants is unknown. In-depth characterization of these amino acid changes revealed several nsSNPs (A448D, Q600stop, C632fs [frame shift], A761E, N795K) causing full or partial loss of receptor function, while one nsSNP (F383S) significantly increased basal activity of ADGRD1. Conclusion: Our results show that a broad spectrum of functionally relevant ADGRD1 variants is present in the human population which may cause clinically relevant phenotypes, while being compatible with life when heterozygous
Parallel Selection on TRPV6 in Human Populations
We identified and examined a candidate gene for local directional selection in Europeans, TRPV6, and conclude that selection has acted on standing genetic variation at this locus, creating parallel soft sweep events in humans. A novel modification of the extended haplotype homozygosity (EHH) test was utilized, which compares EHH for a single allele across populations, to investigate the signature of selection at TRPV6 and neighboring linked loci in published data sets for Europeans, Asians and African-Americans, as well as in newly-obtained sequence data for additional populations. We find that all non-African populations carry a signature of selection on the same haplotype at the TRPV6 locus. The selective footprints, however, are significantly differentiated between non-African populations and estimated to be younger than an ancestral population of non-Africans. The possibility of a single selection event occurring in an ancestral population of non-Africans was tested by simulations and rejected. The putatively-selected TRPV6 haplotype contains three candidate sites for functional differences, namely derived non-synonymous substitutions C157R, M378V and M681T. Potential functional differences between the ancestral and derived TRPV6 proteins were investigated by cloning the ancestral and derived forms, transfecting cell lines, and carrying out electrophysiology experiments via patch clamp analysis. No statistically-significant differences in biophysical channel function were found, although one property of the protein, namely Ca2+ dependent inactivation, may show functionally relevant differences between the ancestral and derived forms. Although the reason for selection on this locus remains elusive, this is the first demonstration of a widespread parallel selection event acting on standing genetic variation in humans, and highlights the utility of between population EHH statistics
Nuclear gene indicates coat-color polymorphism in mammoths
By amplifying the melanocortin type 1 receptor from the woolly mammoth, we can report the complete nucleotide sequence of a nuclear-encoded gene from an extinct species. We found two alleles and show that one allele produces a functional protein whereas the other one encodes a protein with strongly reduced activity. This finding suggests that mammoths may have been polymorphic in coat color, with both dark- and light-haired individuals co-occurring
Deciphering and modulating G protein signalling in C. elegans using the DREADD technology
G-protein signalling is an evolutionary conserved concept highlighting its fundamental impact on developmental and functional processes. Studies on the effects of G protein signals on tissues as well as an entire organism are often conducted in Caenorhabditis elegans. To understand and control dynamics and kinetics of the processes involved, pharmacological modulation of specific G protein pathways would be advantageous, but is difficult due to a lack in accessibility and regulation. To provide this option, we designed G protein-coupled receptor-based designer receptors (DREADDs) for C. elegans. Initially described in mammalian systems, these modified muscarinic acetylcholine receptors are activated by the inert drug clozapine N-oxide, but not by their endogenous agonists. We report a novel
C. elegans-specific DREADD, functionally expressed and specifically activating Gq-protein signalling in vitro and in vivo which we used for modulating mating behaviour. Therefore, this novel designer receptor demonstrates the possibility to pharmacologically control physiological functions in C. elegans
Intramolecular activity regulation of adhesion GPCRs in light of recent structural and evolutionary information
The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes
- …