58 research outputs found

    Synthesis and Evaluation of Eight- and Four-membered Iminosugar Analogues as Inhibitors of Testicular Ceramide-specific Glucosyltransferase, Testicular β-Glucosidase 2, and other Glycosidases

    Get PDF
    Eight- and four-membered analogues of N-butyldeoxynojirimycin (NB-DNJ), a reversible male contraceptive in mice, were prepared and tested. A chiral pool approach was used for the synthesis of the target compounds. Key steps for the synthesis of the eight-membered analogues involve: ringclosing metathesis and Sharpless asymmetric dihydroxylation, and for the four-membered analogues: Sharpless epoxidation, epoxide ring opening (azide), and Mitsunobu reaction to form the four-membered ring. (3S,4R,5S,6R,7R)-1-Nonylazocane-3,4,5,6,7-pentaol (6), was moderately active against rat-derived ceramide-specific glucosyltransferase and four of the other eight-membered analogues were weakly active against rat-derived β-glucosidase 2. Among the four-membered analogues, ((2R,3s,4S)-3-hydroxy-1-nonylazetidine-2,4-diyl)dimethanol (25), displayed selective inhibitory activity against mouse-derived ceramide-specific glucosyltransferase and was about half as potent as NB-DNJ against the rat-derived enzyme. ((2S,4S)-3-Hydroxy-1-nonyl-azetidine-2,4-diyl)dimethanol (27) was found to be a selective inhibitor of β-glucosidase 2, with potency similar to NB-DNJ. Additional glycosidase assays were performed to identify potential other therapeutic applications. The eight-membered iminosugars exhibited specificity for almond-derived β-glucosidase and the 1-nonylazetidine 25 inhibited α-glucosidase (Saccharomyces cerevisiae) with an IC50 of 600 nM and β-glucosidase (almond) with an IC50 of 20 µM. Only N-nonyl derivatives were active, emphasizing the importance of a long lipophilic side chain for inhibitory activity of the analogues studied

    Ack1 Mediated AKT/PKB Tyrosine 176 Phosphorylation Regulates Its Activation

    Get PDF
    The AKT/PKB kinase is a key signaling component of one of the most frequently activated pathways in cancer and is a major target of cancer drug development. Most studies have focused on its activation by Receptor Tyrosine Kinase (RTK) mediated Phosphatidylinositol-3-OH kinase (PI3K) activation or loss of Phosphatase and Tensin homolog (PTEN). We have uncovered that growth factors binding to RTKs lead to activation of a non-receptor tyrosine kinase, Ack1 (also known as ACK or TNK2), which directly phosphorylates AKT at an evolutionarily conserved tyrosine 176 in the kinase domain. Tyr176-phosphorylated AKT localizes to the plasma membrane and promotes Thr308/Ser473-phosphorylation leading to AKT activation. Mice expressing activated Ack1 specifically in the prostate exhibit AKT Tyr176-phosphorylation and develop murine prostatic intraepithelial neoplasia (mPINs). Further, expression levels of Tyr176-phosphorylated-AKT and Tyr284-phosphorylated-Ack1 were positively correlated with the severity of disease progression, and inversely correlated with the survival of breast cancer patients. Thus, RTK/Ack1/AKT pathway provides a novel target for drug discovery

    Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate.

    Get PDF
    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2alpha-hydroxy)-gamma-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2alpha-hydroxy)-gamma-carboxypropylidene thiamin diphosphate (the "ThDP-enamine"/C2alpha-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an "off-pathway" side reaction comprising less than 1% of the "on-pathway" reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease

    Comparative X-ray analysis of the unliganded fosfomycin-target MurA

    No full text
    MurA, an essential enzyme for the synthesis of the bacterial cell wall, follows an induced-fit mechanism. Upon substrate binding, the active site forms in the interdomain cleft, involving movements of the two domains of the protein and a reorientation of the loop Pro112-Pro121. We compare two structures of un-liganded MurA from Enterobacter cloacae: a new orthorhombic form, solved to 1.80 Ă… resolution, and a monoclinic form, redetermined to 1.55 Ă… resolution. In the monoclinic form, the loop Pro112-Pro121 stretches into solvent, while in the new form it adopts a winded conformation, thereby reducing solvent accessibility of the critical residue Cys115. In the interdomain cleft a network of 27 common water molecules has been identified, which partially shields negative charges in the cleft and stabilizes the orientation of catalytically crucial residues. This could support substrate binding and ease domain movements. Near the hinge region an isoaspartyl residue has been recognized, which is the product of post-translational modification of the genetically encoded Asn67-Gly68. The homogenous population with L-isoaspartate in both structures suggests that the modification in Enterobacter cloacae MurA is not a mere aging defect but rather the result of a specific in vivo process.bacterial cell wall; induced-fit mechanism; solvent network; deamidation; isoaspartate formatio
    • …
    corecore