5 research outputs found

    Omnidirectional Stereo Vision for Autonomous Vehicles

    Get PDF
    Environment perception with cameras is an important requirement for many applications for autonomous vehicles and robots. This work presents a stereoscopic omnidirectional camera system for autonomous vehicles which resolves the problem of a limited field of view and provides a 360° panoramic view of the environment. We present a new projection model for these cameras and show that the camera setup overcomes major drawbacks of traditional perspective cameras in many applications

    Omnidirectional Stereo Vision for Autonomous Vehicles

    Get PDF
    Environment perception with cameras is an important requirement for many applications for autonomous vehicles and robots. This work presents a stereoscopic omnidirectional camera system for autonomous vehicles which resolves the problem of a limited field of view and provides a 360° panoramic view of the environment. We present a new projection model for these cameras and show that the camera setup overcomes major drawbacks of traditional perspective cameras in many applications

    Antinociceptive and Anti-Inflammatory Effects of Ethanol Extract from Vernonia polyanthes Leaves in Rodents

    Get PDF
    The ethanol extract from Vernonia polyanthes leaves (EEVP) was investigated for antinociceptive and anti-inflammatory effects at the doses (p.o.) of 100, 200 and 400 mg/kg in animal models. The extract reduced the number of abdominal contortions by 16.75% and 31.44% at a dose of 200 and 400 mg/kg, respectively. The results obtained showed that EEVP exerted a significant antinociceptive effect in the two phases of formalin. The EEVP increased the reaction time on a hot plate at the doses of 100, 200 and 400 mg/kg after 90 min of treatment. The paw edema was reduced by EEVP at the doses of 100, 200 and 400 mg/kg after 4 h of application of carrageenan. Doses of 200 and 400 mg/kg, administered 4 h before the carrageenan injection, significantly reduced the exudate volume (29.25 and 45.74%, respectively) and leukocyte migration (18.19 and 27.95%, respectively). These results suggest that V. polyanthes can be an active source of substances with antinociceptive and anti-inflammatory activities

    Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds

    No full text
    Abstract — This paper proposes a method for high-quality omnidirectional 3D reconstruction of augmented Manhattan worlds from catadioptric stereo video sequences. In contrast to existing works we do not rely on constructing virtual perspective views, but instead propose to optimize depth jointly in a unified omnidirectional space. Furthermore, we show that plane-based prior models can be applied even though planes in 3D do not project to planes in the omnidirectional domain. Towards this goal, we propose an omnidirectional slanted-plane Markov random field model which relies on plane hypotheses extracted using a novel voting scheme for 3D planes in omnidirectional space. To quantitatively evaluate our method we introduce a dataset which we have captured using our autonomous driving platform AnnieWAY which we equipped with two horizontally aligned catadioptric cameras and a Velodyne HDL-64E laser scanner for precise ground truth depth measurements. As evidenced by our experiments, the proposed method clearly benefits from the unified view and significantly outperforms existing stereo matching techniques both quantitatively and qualitatively. Furthermore, our method is able to reduce noise and the obtained depth maps can be represented very compactly by a small number of image segments and plane parameters. I

    Calibrating and Centering Quasi-Central Catadioptric Cameras

    No full text
    Abstract — Non-central catadioptric models are able to cope with irregular camera setups and inaccuracies in the manufacturing process but are computationally demanding and thus not suitable for robotic applications. On the other hand, calibrating a quasi-central (almost central) system with a central model introduces errors due to a wrong relationship between the viewing ray orientations and the pixels on the image sensor. In this paper, we propose a central approximation to quasicentral catadioptric camera systems that is both accurate and efficient. We observe that the distance to points in 3D is typically large compared to deviations from the single viewpoint. Thus, we first calibrate the system using a state-of-the-art noncentral camera model. Next, we show that by remapping the observations we are able to match the orientation of the viewing rays of a much simpler single viewpoint model with the true ray orientations. While our approximation is general and applicable to all quasi-central camera systems, we focus on one of the most common cases in practice: hypercatadioptric cameras. We compare our model to a variety of baselines in synthetic and real localization and motion estimation experiments. We show that by using the proposed model we are able to achieve near non-central accuracy while obtaining speed-ups of more than three orders of magnitude compared to state-of-the-art noncentral models. I
    corecore