102 research outputs found

    The influence of interparticle cohesion on rebounding slow impacts on rubble pile asteroids

    Get PDF
    The ballistic sorting effect has been proposed to be a driver behind the observed size sorting on the rubble pile asteroid Itokawa. This effect depends on the inelasticity of slow collisions with granular materials. The inelasticity of a collision with a granular material, in turn, depends on grain size. Here we argue that determining the inelasticity of such collisions in an asteroid-like environment is a nontrivial task. We show non-monotonic dependency of the coefficient of restitution (COR) on target particle size using experiments in microgravity. Employing numerical simulations, we explain these results with the growing influence of adhesion for smaller-sized particles. We conclude that there exists an optimum impactor to target particle size ratio for ballistic sorting

    Time since onset of walking predicts tibial bone strength in early childhood

    Get PDF
    Bone strength in adulthood is known to be affected by health at birth and early childhood. Habitual bone loading is a primary determinant of bone strength in later childhood and adulthood. However, the effects of physical activity in early childhood (e.g. crawling, standing and walking) on bone strength are unknown. Fifty-three children (twenty-seven males) were included in a longitudinal study in their early infancy. Shortly after birth (0.3 ± 0.3 months), details of mass and height were obtained along with a pQCT scan at 20% distal–proximal tibia length. At 14.8 ± 0.5 months of age the same data were collected, along with details of age at onset of standing, crawling, supported and unsupported walking. Time since onset of walking unsupported was associated with greater bone mass, cortical bone area, pericortical circumference and polar moment of inertia of both total and cortical bone (all P < 0.05). There were no significant associations between other physical activity timepoints and bone measures. Age at onset of walking was not significantly related to mass, length or bone measures at birth. The results suggest that time since attainment of independent walking — representing exposure of the tibia to the large reaction and muscular forces associated with locomotion — is a primary determinant of bone strength in early childhood. This finding raises the possible opportunity of physical activity interventions at young age in paediatric populations associated with low childhood bone strength and late walking (e.g. low birth weight, cerebral palsy and Down's Syndrome, etc.)

    The nature of iron-oxygen vacancy defect centers in PbTiO3

    Full text link
    The iron(III) center in ferroelectric PbTiO3 together with an oxygen vacancy forms a charged defect associate, oriented along the crystallographic c-axis. Its microscopic structure has been analyzed in detail comparing results from a semi-empirical Newman superposition model analysis based on finestructure data and from calculations using density functional theory. Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor center. The position of the iron ion in the ferroelectric phase is found to be similar to the B-site in the paraelectric phase. Partial charge compensation is locally provided by a directly coordinated oxygen vacancy. Using high-resolution synchrotron powder diffraction, it was verified that lead titanate remains tetragonal down to 12 K, exhibiting a c/a-ratio of 1.0721.Comment: 11 pages, 5 figures, accepted in Phys. Rev.

    Effects of long-term immobilisation on endomysium of the soleus muscle in humans

    Get PDF
    New Findings: What is the central question of this study? While muscle fibre atrophy in response to immobilisation has been extensively examined, intramuscular connective tissue, particularly endomysium, has been largely neglected: does endomysium content of the soleus muscle increase during bed rest? What is the main finding and its importance? Absolute endomysium content did not change, and previous studies reporting an increase are explicable by muscle fibre atrophy. It must be expected that even a relative connective tissue accumulation will lead to an increase in muscle stiffness. Abstract: Muscle fibres atrophy during conditions of disuse. Whilst animal data suggest an increase in endomysium content with disuse, that information is not available for humans. We hypothesised that endomysium content increases during immobilisation. To test this hypothesis, biopsy samples of the soleus muscle obtained from 21 volunteers who underwent 60 days of bed rest were analysed using immunofluorescence-labelled laminin γ-1 to delineate individual muscle fibres as well as the endomysium space. The endomysium-to-fibre-area ratio (EFAr, as a percentage) was assessed as a measure related to stiffness, and the endomysium-to-fibre-number ratio (EFNr) was calculated to determine whether any increase in EFAr was absolute, or could be attributed to muscle fibre shrinkage. As expected, we found muscle fibre atrophy (P = 0.0031) that amounted to shrinkage by 16.6% (SD 28.2%) on day 55 of bed rest. ENAr increased on day 55 of bed rest (P < 0.001). However, when analysing EFNr, no effect of bed rest was found (P = 0.62). These results demonstrate that an increase in EFAr is likely to be a direct effect of muscle fibre atrophy. Based on the assumption that the total number of muscle fibres remains unchanged during 55 days of bed rest, this implies that the absolute amount of connective tissue in the soleus muscle remained unchanged. The increased relative endomysium content, however, could be functionally related to an increase in muscle stiffness

    Symptomatic cerebral oedema during treatment of diabetic ketoacidosis: effect of adjuvant octreotide infusion

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A potentially lethal complication of diabetic ketoacidosis (DKA) in children is brain oedema, whether caused by DKA itself or by the therapeutic infusion of insulin and fluids.</p> <p>Case presentation</p> <p>A 10-year old previously healthy boy with DKA became unconscious and apnoeic due to cerebral oedema (confirmed by abnormal EEG and CT-scan) during treatment with intravenous fluids (36 ml/h) and insulin (0.1 units/kg/h). He was intubated and artificially ventilated, without impact on EEG and CT-scan. Subsequently, adjuvant infusion of octreotide was applied (3.5 μg/kg/h), suppressing growth hormone (GH) and IGF-1 production and necessitating the insulin dose to be reduced to 0.05 - 0.025 units/kg/h. The brain oedema improved and the boy made a full recovery.</p> <p>Conclusion</p> <p>Co-therapy with octreotide was associated with a favourable outcome in the present patient with DKA and cerebral oedema. Whether this could be ascribed to the effects of octreotide on the insulin requirement or on the GH/IGF-axis remains to be elucidated.</p

    Black-wattle growth in reponse to application of nitrogen, phosphorus and potassium

    Get PDF
    Due to the lack of information about Black-wattle fertilization, this study evaluated black-wattle plants growth in response to different fertilization levels of nitrogen, phosphorus and potassium six years after implantation. The statistical design used was a randomized blocks with trifatorial distribution. Total height (m), diameter at breast height (DBH) (cm) and stem volume with bark (m³ ha-1) were evaluated. Black-wattle showed a positive and significant growth response to N and P (interaction) fertilizations and absence for K. m To obtain the maximum development of black-wattle, for the soil and climate condition studied, it is required the use of the maximum dose of nitrogen (40.0 kg ha-1 N) and 78.9 kg ha-1 phosphorus, not requiring the addition of potassium

    Prediction models for short children born small for gestational age (SGA) covering the total growth phase. Analyses based on data from KIGS (Pfizer International Growth Database)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical models can be developed to predict growth in short children treated with growth hormone (GH). These models can serve to optimize and individualize treatment in terms of height outcomes and costs. The aims of this study were to compile existing prediction models for short children born SGA (SGA), to develop new models and to validate the algorithms.</p> <p>Methods</p> <p>Existing models to predict height velocity (HV) for the first two and the fourth prepubertal years and during total pubertal growth (TPG) on GH were applied to SGA children from the KIGS (Pfizer International Growth Database) - 1<sup>st </sup>year: N = 2340; 2<sup>nd </sup>year: N = 1358; 4<sup>th </sup>year: N = 182; TPG: N = 59. A new prediction model was developed for the 3<sup>rd </sup>prepubertal year based upon 317 children by means of the all-possible regression approach, using Mallow's C(p) criterion.</p> <p>Results</p> <p>The comparison between the observed and predicted height velocity showed no significant difference when the existing prediction models were applied to new cohorts. A model for predicting HV during the 3<sup>rd </sup>year explained 33% of the variability with an error SD of 1.0 cm/year. The predictors were (in order of importance): HV previous year; chronological age; weight SDS; mid-parent height SDS and GH dose.</p> <p>Conclusions</p> <p>Models to predict growth to GH from prepubertal years to adult height are available for short children born SGA. The models utilize easily accessible predictors and are accurate. The overall explained variability in SGA is relatively low, due to the heterogeneity of the disorder. The models can be used to provide patients with a realistic expectation of treatment, and may help to identify compliance problems or other underlying causes of treatment failure.</p

    Effects of poling and crystallinity on the dielectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 at cryogenic temperatures

    Get PDF
    The mechanisms underlying the anomalously large, room temperature piezoelectric activity of relaxor-PbTiO3 type single crystals have previously been linked to low temperature relaxations in the piezoelectric and dielectric properties. We investigate the properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 between 10 and 300 K using dielectric permittivity measurements. We compare results on single crystal plates measured in the [001] and [111] directions with a polycrystalline ceramic of the same composition. Poled crystals have very different behaviour to unpoled crystals, whereas the dielectric spectrum of the polycrystalline ceramic changes very little on poling. A large, frequency dependent dielectric relaxation is seen in the poled [001] crystal around 100 K. The relaxation is much less prominent in the [111] cut crystal, and is not present in the polycrystalline ceramic. The unique presence of the large relaxation in poled, [001] oriented crystals indicates that the phenomenon is not due their relaxor nature alone. We propose that heterophase dynamics such as the motion of phase domain boundaries are responsible for both the anomalous electromechanical and dielectric behaviour
    corecore