1,694 research outputs found

    Dielectric resonances in disordered media

    Full text link
    Binary disordered systems are usually obtained by mixing two ingredients in variable proportions: conductor and insulator, or conductor and super-conductor. and are naturally modeled by regular bi-dimensional or tri-dimensional lattices, on which sites or bonds are chosen randomly with given probabilities. In this article, we calculate the impedance of the composite by two independent methods: the so-called spectral method, which diagonalises Kirchhoff's Laws via a Green function formalism, and the Exact Numerical Renormalization method (ENR). These methods are applied to mixtures of resistors and capacitors (R-C systems), simulating e.g. ionic conductor-insulator systems, and to composites consituted of resistive inductances and capacitors (LR-C systems), representing metal inclusions in a dielectric bulk. The frequency dependent impedances of the latter composites present very intricate structures in the vicinity of the percolation threshold. We analyse the LR-C behavior of compounds formed by the inclusion of small conducting clusters (``nn-legged animals'') in a dielectric medium. We investigate in particular their absorption spectra who present a pattern of sharp lines at very specific frequencies of the incident electromagnetic field, the goal being to identify the signature of each animal. This enables us to make suggestions of how to build compounds with specific absorption or transmission properties in a given frequency domain.Comment: 10 pages, 6 figures, LaTeX document class EP

    European Union Litigation

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.AbstractThis article provides an overview of cases decided by the Court of Justice of the European Union concerning contract law. The present issue covers the period between July 2017 and the beginning of January 2018.Peer Reviewe

    Temporary Disenfranchisement: Negative Side Effects of Lowering the Voting Age

    Get PDF
    How does losing one’s right to vote again after having been eligible to vote before affect political fundamentals such as political efficacy? We draw attention to the hitherto neglected phenomenon “temporary disenfranchisement,” which, for instance, occurs regularly in states that extended the franchise to underage citizens in some but not all elections. If an election with voting age 16 is closely followed by an election with voting age 18, underage voters who are eligible for the former will have no right to vote in the latter. Using original panel data on young citizens in Germany and a differences-in-differences design, we find that temporary disenfranchisement results in a decrease in external efficacy, which remains even after regaining eligibility. Our findings highlight an important side effect of selective voting rights extensions and bear insights that are relevant to other cases of temporary disenfranchisement due to residential mobility, citizenship, or felony disenfranchisement

    MÂł: a multiphase, multiconstituant and multiprocess code to model contaminated

    Get PDF
    70% of the contaminated sites in France are with organic compounds (hydrocarbons, chlorinated solvents,…). Modeling such contamination can be difficult as it is governed by numerous and highly coupled mechanisms (multiphase flow, dissolution and volatilization of Non Aqueous Phase Liquids(NAPL), sorption and biodegradation). Whereas many numerical codes include some of these mechanisms, none of them, to our knowledge, allows the modeling of the full set of mechanisms. A new code, called M3 for Multiphase, Multicomponent, Multiprocess, is then being developed to address this kind of modeling. The originality of the code stands both in the diversity of the mechanisms and in original formalisms such as non-local equilibrium dissolution of NAPL or biodegradation formalism dedicated to chlorinated solvents. After a short description of the numerical code, test cases will be presented to highlight the capacity of the code to model many situations that might be accoutered when dealing with contaminated sites (prediction of an accidental spill, temporal evolution of a source zone and its impact on aquifers, assessment of biodegradation…)

    Modelling of an induction heating process and resulting material distribution of a hybrid semi-finished product after impact extrusion

    Get PDF
    Multi-material solutions offer benefits, as they, in contrary to conventional monolithic parts, are customised hybrid components with properties that optimally fit the application locally. Adapted components offer the possibility to use high strength material in areas where external loads require it and substitute them by lightweight material in the other areas. The presented study describes the manufacturing of a hybrid shaft along the process chain Tailored Forming, which uses serial pre-joined semi-finished products in the forming stage. Subject of this study is the numerical modelling of the heating process by induction heating of a hybrid semi-finished product and the resulting material distribution after the impact extrusion process. For this endeavour, a numerical model of an inhomogeneous induction heating process was developed. The main challenge is to determine the boundary conditions such as current intensity acting in the induction coil and the electromagnetic properties of the used material. The current intensity was measured by a Rogowski coil during experimental heating tests. The relative magnetic permeability was modelled as a function of temperature using the method of Zedler. The results show the importance of using a relative magnetic permeability as a function of temperature to guarantee a high quality of the numerical model. Subsequently, the model was applied to the heating of the hybrid semi-finished product consisting of a steel and aluminium alloy. By using inductive heating and thus a resulting inhomogeneous temperature field, good agreement of the material distribution between experiment and simulation could be achieved after the forming process

    A systematic approach for simulation-based dimensioning of production systems during the concept phase of factory planning

    Get PDF
    Due to increasing globalization, market penetration, and technological progress, more products are becoming highly standardized and interchangeable. This has led to fierce price competition, forcing companies to compete for declining margins. To remain competitive in the long term, it is essential to consider both changeability and profitability during the early planning phases. The article proposes an approach for simulation studies using discrete-event simulation during the concept phase of factory planning. This approach aims to systematically dimension production resources while considering alternative scaling options, such as a higher degree of automation. By doing so, the approach facilitates the demand-oriented deployment of resources during the ramp-up phase, which helps to control and reduce manufacturing costs. The simulation experiments yield scaling paths that indicate the timing and quantity of resources required to meet changing demands. These paths form the basis for subsequent factory planning steps. For instance, the layout can incorporate the necessary space for a future automation solution that will be profitable, enabling faster adaptation to demand changes and securing competitive advantages. This is demonstrated in a use case where the approach was applied to the factory planning of a new production system for a sensor product family

    The Bioactive Phenolic Agents Diaryl Ether CVB2-61 and Diarylheptanoid CVB4-57 as Connexin Hemichannel Blockers

    Get PDF
    Inflammation mediators enhance the activity of connexin (Cx) hemichannels, especially in the epithelial and endothelial tissues. As potential release routes for injury signals, such as (oligo)nucleotides, Cx hemichannels may contribute to long-lasting inflammation. Specific inhibition of Cx hemichannels may therefore be a mode of prevention and treatment of long-lasting, chronic sterile inflammation. The activity of Cx hemichannels was analysed in N2A and HeLa cells transfected with human Cx26 and Cx46 as well as in Calu-3 cells, using dye uptake as functional assay. Moreover, the possible impacts of the bioactive phenolic agents CVB2-61 and CVB4-57 on the barrier function of epithelial cells was analysed using Calu-3 cells. Both agents inhibited the dye uptake in N2A cells expressing Cx26 (>5 µM) and Cx46 (>20 µM). In Calu-3 cells, CVB2-61 and CVB4-57 reversibly inhibited the dye uptake at concentrations as low as 5 µM, without affecting the gap junction communication and barrier function, even at concentrations of 20 µM. While CVB2-61 or CVB4-57 maintained a reduced dye uptake in Calu-3 cells, an enhancement of the dye uptake in response to the stimulation of adenosine signalling was still observed after removal of the agents. The report shows that CVB2-61 and CVB4-57 reversibly block Cx hemichannels. Deciphering the mechanisms of the interactions of these agents with Cx hemichannels could allow further development of phenolic compounds to target Cx hemichannels for better and safer treatment of pathologies that involve Cx hemichannels
    • …
    corecore