825 research outputs found

    How Does Feedback Affect Milky Way Satellite Formation?

    Full text link
    We use sub-parsec resolution hydrodynamic resimulations of a Milky Way (MW) like galaxy at high redshift to investigate the formation of the MW satellite galaxies. More specifically, we assess the impact of supernova feedback on the dwarf progenitors of these satellite, and the efficiency of a simple instantaneous reionisation scenario in suppressing star formation at the low-mass end of this dwarf distribution. Identifying galaxies in our high redshift simulation and tracking them to z=0 using a dark matter halo merger tree, we compare our results to present-day observations and determine the epoch at which we deem satellite galaxy formation must be completed. We find that only the low-mass end of the population of luminous subhalos of the Milky-Way like galaxy is not complete before redshift 8, and that although supernovae feedback reduces the stellar mass of the low-mass subhalos (log(M/Msolar) < 9), the number of surviving satellites around the Milky-Way like galaxy at z = 0 is the same in the run with or without supernova feedback. If a luminous halo is able to avoid accretion by the Milky-Way progenitor before redshift 3, then it is likely to survive as a MW satellite to redshift 0.Comment: Oral Presentation, Proceedings of "A Universe of Dwarf Galaxies" Conference, Lyon 201

    A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property.

    Get PDF
    Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase

    The Detectability of the First Stars and Their Cluster Enrichment Signatures

    Get PDF
    We conduct a comprehensive investigation of the detectability of the first stars and their enrichment signatures in galaxy clusters. We show that the mean metallicity of outflows from objects containing these Population III (PopIII) stars is well above the critical transition metallicity (Z_cr \sim 10^-4) that marks the formation of normal stars. Thus the fraction of PopIII objects formed as a function of redshift is heavily dependent on the distribution of metals and fairly independent of the precise value of Z_cr. Using an analytical model of inhomogenous structure formation, we study the evolution of PopIII objects as a function of the star formation efficiency, IMF, and efficiency of outflow generation. For all models, PopIII objects tend to be in the 10^6.5-10^7.0 solar mass range, just large enough to cool within a Hubble time, but small enough that they are not clustered near areas of previous star formation. Although the mean metallicity exceeds Z_cr at a redshift of 15 in all models, the peak of PopIII star formation occurs at z \sim 10, and such stars continue to form well into the observable range. We discuss the observational properties of these objects, some of which may have already been detected in ongoing surveys of high-redshift Lyman-alpha emitters. Finally, we combine our PopIII distributions with the yield models of Heger and Woosley (2002) to study their impact on the intracluster medium (ICM) in galaxy clusters. We find that PopIII stars can contribute no more than 20% of the iron observed in the ICM, although their peculiar elemental yields help to reconcile theoretical models with the observed Fe and Si/Fe abundances. However, these stars tend to overproduce S/Fe and their associated SN heating falls far short of the observed level of 1 keV per ICM gas particle

    The Size and Origin of Metal-enriched Regions in the Intergalactic Medium from Spectra of Binary Quasars

    Get PDF
    We present tomography of the circum-galactic metal distribution at redshift 1.7-4.5 derived from echellete spectroscopy of binary quasars. We find C IV systems at similar redshifts in paired sightlines more often than expected for sightline-independent redshifts. As the separation of the sightlines increases from 36 kpc to 907 kpc, the amplitude of this clustering decreases. At the largest separations, the C IV systems cluster similar to the Lyman-break galaxies studied by Adelberger et al. in 2005. The C IV systems are significantly less correlated than these galaxies, however, at separations less than R_1 0.42 ± 0.15 h^( –1) comoving Mpc. Measured in real space, i.e., transverse to the sightlines, this length scale is significantly smaller than the break scale estimated previously from the line-of-sight correlation function in redshift space by Scannapieco et al. in 2006. Using a simple model, we interpret the new real-space measurement as an indication of the typical physical size of enriched regions. We adopt this size for enriched regions and fit the redshift-space distortion in the line-of-sight correlation function. The fitted velocity kick is consistent with the peculiar velocity of galaxies as determined by the underlying mass distribution and places an upper limit on the average outflow (or inflow) speed of metals. The implied timescale for dispersing metals is larger than the typical stellar ages of Lyman-break galaxies, and we argue that enrichment by galaxies at z > 4.3 played a greater role in dispersing metals. To further constrain the growth of enriched regions, we discuss empirical constraints on the evolution of the C IV correlation function with cosmic time. This study demonstrates the potential of tomography for measuring the metal enrichment history of the circum-galactic medium

    The host galaxies of long-duration GRBs in a cosmological hierarchical scenario

    Get PDF
    We developed a Monte Carlo code to generate long-duration gamma ray burst (LGRB) events within cosmological hydrodynamical simulations consistent with the concordance model. As structure is assembled, LGRBs are generated in the substructure that formed galaxies today. We adopted the collapsar model so that LGRBs are produced by single, massive stars at the final stage of their evolution. We found that the observed properties of the LGRB host galaxies (HGs) are reproduced if LGRBs are also required to be generated by low metallicity stars. The low metallicity condition imposed on the progenitor stars of LGRBs selects a sample of HGs with mean gas abundances of 12 + log O/H \~ 8.6. For z<1 the simulated HGs of low metallicity LGRB progenitors tend to be faint, slow rotators with high star formation efficiency, compared with the general galaxy population, in agreement with observations. At higher redshift, our results suggest that larger systems with high star formation activity could also contribute to the generation of LGRBs from low metallicity progenitors since the fraction of low metallicity gas available for star formation increases for all systems with look-back time. Under the hypothesis of our LGRB model, our results support the claim that LGRBs could be unbiased tracers of star formation at high redshifts.Comment: Final revised version with minor changes. 9 pages, 9 figures, mn2e.cls. To appear in MNRA

    Fingerprints of the hierarchical building up of the structure on the gas kinematics of galaxies

    Get PDF
    Recent observational and theoretical works have suggested that the Tully-Fisher Relation might be generalised to include dispersion-dominated systems by combining the rotation and dispersion velocity in the definition of the kinematical indicator. Mergers and interactions have been pointed out as responsible of driving turbulent and disordered gas kinematics, which could generate Tully-Fisher Relation outliers. We intend to investigate the gas kinematics of galaxies by using a simulated sample which includes both, gas disc-dominated and spheroid-dominated systems. Cosmological hydrodynamical simulations which include a multiphase model and physically-motivated Supernova feedback were performed in order to follow the evolution of galaxies as they are assembled. Both the baryonic and stellar Tully-Fisher relations for gas disc-dominated systems are tight while, as more dispersion-dominated systems are included, the scatter increases. We found a clear correlation between σ/Vrot\sigma / V_{\rm rot} and morphology, with dispersion-dominated systems exhibiting the larger values (>0.7> 0.7). Mergers and interactions can affect the rotation curves directly or indirectly inducing a scatter in the Tully-Fisher Relation larger than the simulated evolution since z3z \sim 3. Kinematical indicators which combine rotation velocity and dispersion velocity can reduce the scatter in the baryonic and the stellar mass-velocity relations. Our findings also show that the lowest scatter in both relations is obtained if the velocity indicators are measured at the maximum of the rotation curve. Moreover, the rotation velocity estimated at the maximum of the gas rotation curve is found to be the best proxy for the potential well regardless of morphology.Comment: 16 pages, 10 figures, accepted for publication in A&
    corecore