7,661 research outputs found
Multimedia motion: Motivating learners
The Multimedia Motion CD‐ROM is used as part of the teaching for the Supported Learning in Physics (SLIP) project, an Open University‐led project to develop open and flexible learning materials in physics for use by post‐16 students in schools and colleges. Multimedia Motion enables students to chart and analyse a range of movements: displacement, velocities, accelerations, etc. of a variety of people and vehicles. During the pilot phase of the project, we conducted an evaluation of the CD‐ROM‐based activities. The evaluation consisted of observations of teacher and student use of the material in two schools, augmented with data obtained from questionnaires administered in a further two schools. The resulting data raises a number of issues about how exploratory learning can best be supported by multimedia. We observed the expected benefits of increased motivation for learners because of access to more realistic applications of the laws of physics illustrated on the disc. However, several others factors appeared to be important to students when using it. In this paper, we explore how teachers’ and students’ perceptions of the task involved in learning post‐16 physics must be addressed in designing suitable multimedia presentations and exercises
Indoor radio channel characterization and modeling for a 5.2-GHz bodyworn receiver
[Abstract]: Wireless local area network applications may include the use of bodyworn or handportable terminals. For the first time, this paper compares measurements and simulations of a narrowband 5.2-GHz radio channel incorporating a fixed transmitter and a mobile bodyworn receiver. Two indoor environments were considered,
an 18-m long corridor and a 42-m2 office. The modeling
technique was a site-specific ray-tracing simulator incorporating the radiation pattern of the bodyworn receiver. In the corridor, the measured body-shadowing effect was 5.4 dB, while it was 15.7 dB in the office. First- and second-order small-scale fading statistics
for the measured and simulated results are presented and compared with theoretical Rayleigh and lognormal distributions. The root mean square error in the cumulative distributions for the simulated results was less than 0.74% for line-of-sight conditions and less than 1.4% for nonline-of-sight conditions
A numerical flow simulation of a mixed flow pump
Mixed flow pumps are primarily axial flow pumps, but they impart some degree of radial and swirling momentum to the pump fluid as it passes through the rotor section. They are popular for pumping water in tight spaces, so are used for residential wells, municipal water works, industrial applications, and even for powering small water craft
A numerical and experimental analysis of flow in a centrifugal pump
Computational fluid dynamics (CFD) analysis has been used to solve the unsteady three-dimensional viscous flow in the entire impeller and volute casing of a centrifugal pump. The results of the calculations are used to predict the impeller/volute interaction and to obtain the unsteady pressure distribution in the impeller and volute casing. The calculated unsteady pressure distribution is used to determine the unsteady blade loading. The calculations at the design point and at two off-design points are carried out with a multiple frame of reference and a sliding mesh technique is applied to consider the impeller/volute interaction
Ironwork of Teixois-Taramundi (Asturias) Spain
This paper describes an old ironwork placed in a Spanish village. All parts of it are studied, specially the Air supply and the Hydraulic wheel. The minimum area in the water trump for a correct air flow is calculated. On the other hand, also the power supply by the hydraulic wheel, in normal conditions, to move the hammer with a required frequency is calculated
Propagation modelling and measurements in a populated indoor environment at 5.2 GHz
There are a number of significant radiowave propagation phenomena present in the populated indoor environment, including multipath fading and human body effects. The latter can be divided into shadowing and scattering caused by pedestrian movement, and antenna-body interaction with bodyworn or hand portable terminals [1]. Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that can strongly affect the quality of indoor wireless communication systems. Hence, populated environments remain a major challenge for wireless local area networks (WLAN) and other indoor communication systems. Therefore, it is important to develop an understanding of the potential and limitations of indoor radiowave propagation at key frequencies of interest, such as the 5.2 GHz band employed by commercial wireless LAN standards such as IEEE 802.11a and HiperLAN 2.
Although several indoor wireless models have been proposed in the literature, these temporal variations have not yet been thoroughly investigated. Therefore, we have made an important contribution to the area by conducting a systematic study of the problem, including a propagation measurement campaign and statistical channel characterization of human body effects on line-of-sight indoor propagation at 5.2 GHz.
Measurements were performed in the everyday environment of a 7.2 m wide University hallway to determine the statistical characteristics of the 5.2 GHz channel for a fixed, transverse line-of-sight (LOS) link perturbed by pedestrian movement. Data were acquired at hours of relatively high pedestrian activity, between 12.00 and 14.00. The location was chosen as a typical indoor wireless system environment that had sufficient channel variability to permit a valid statistical analysis.
The paper compares the first and second order statistics of the empirical signals with the Gaussian-derived distributions commonly used in wireless communications. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the Cumulative Distribution Function (CDF) of the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. These results are consistent with previous results obtained for controlled measurement scenarios using a fixed link at 5.2 GHz in [2], where the K factor reduced as the number of pedestrians within a controlled measurement area increased. Level crossing rate results were Rice distributed, considering a maximum Doppler frequency of 8.67 Hz. While average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians.
A novel statistical model that accurately describes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment. The model provides an insight into the prediction of human body shadowing effects for indoor channels at 5.2 GHz
A comparison of two position estimate algorithms that use ILS localizer and DME information. Simulation and flight test results
Simulation and flight tests were conducted to compare the accuracy of two algorithms designed to compute a position estimate with an airborne navigation computer. Both algorithms used ILS localizer and DME radio signals to compute a position difference vector to be used as an input to the navigation computer position estimate filter. The results of these tests show that the position estimate accuracy and response to artificially induced errors are improved when the position estimate is computed by an algorithm that geometrically combines DME and ILS localizer information to form a single component of error rather than by an algorithm that produces two independent components of error, one from a DMD input and the other from the ILS localizer input
Flight tests with a data link used for air traffic control information exchange
Previous studies showed that air traffic control (ATC) message exchange with a data link offers the potential benefits of increased airspace system safety and efficiency. To accomplish these benefits, data link can be used to reduce communication errors and relieve overloaded ATC voice radio frequencies, which hamper efficient message exchange during peak traffic periods. Flight tests with commercial airline pilots as test subjects were conducted in the NASA Transport Systems Research Vehicle Boeing 737 airplane to contrast flight operations that used current voice communications with flight operations that used data link to transmit both strategic and tactical ATC clearances during a typical commercial airflight from takeoff to landing. The results of these tests that used data link as the primary communication source with ATC showed flight crew acceptance, a perceived reduction in crew work load, and a reduction in crew communication errors
- …
