8,148 research outputs found

    Production spectrum of high energy electrons from high energy cosmic ray collisions

    Get PDF
    Production spectrum of high energy electrons from high energy cosmic ray collision

    Delay in diabetic retinopathy screening increases the rate of detection of referable diabetic retinopathy

    Get PDF
    Aims - To assess whether there is a relationship between delay in retinopathy screening after diagnosis of Type 2 diabetes and level of retinopathy detected. Methods - Patients were referred from 88 primary care practices to an English National Health Service diabetic eye screening programme. Data for screened patients were extracted from the primary care databases using semi-automated data collection algorithms supplemented by validation processes. The programme uses two-field mydriatic digital photographs graded by a quality assured team. Results - Data were available for 8183 screened patients with diabetes newly diagnosed in 2005, 2006 or 2007. Only 163 with Type 1 diabetes were identified and were insufficient for analysis. Data were available for 8020 with newly diagnosed Type 2 diabetes. Of these, 3569 were screened within 6 months, 2361 between 6 and 11 months, 1058 between 12 and 17 months, 366 between 18 and 23 months, 428 between 24 and 35 months, and 238 at 3 years or more after diagnosis. There were 5416 (67.5%) graded with no retinopathy, 1629 (20.3%) with background retinopathy in one eye, 753 (9.4%) with background retinopathy in both eyes and 222 (2.8%) had referable diabetic retinopathy. There was a significant trend (P = 0.0004) relating time from diagnosis to screening detecting worsening retinopathy. Of those screened within 6 months of diagnosis, 2.3% had referable retinopathy and, 3 years or more after diagnosis, 4.2% had referable retinopathy. Conclusions - The rate of detection of referable diabetic retinopathy is elevated in those who were not screened promptly after diagnosis of Type 2 diabetes

    Immorality and Irrationality

    Get PDF
    Does immorality necessarily involve irrationality? The question is often taken to be among the deepest in moral philosophy. But apparently deep questions sometimes admit of deflationary answers. In this case we can make way for a deflationary answer by appealing to dualism about rationality, according to which there are two fundamentally distinct notions of rationality: structural rationality and substantive rationality. I have defended dualism elsewhere. Here, I’ll argue that it allows us to embrace a sensible – I will not say boring – moderate view about the relationship between immorality and irrationality: roughly, that immorality involves substantive irrationality, but not structural irrationality. I defend this moderate view, and argue that many of the arguments for less moderate views turn either on missing the distinction between substantive and structural rationality, or on misconstruing it

    Interrogating fragments using a protein thermal shift assay

    Get PDF
    Protein thermal shift is a relatively rapid and inexpensive technique for the identification of low molecular weight compound interactions with protein targets. An increase in the melting temperature of the target protein in the presence of a test ligand is indicative of a promising ligand-protein interaction. Due to its simplicity, protein thermal shift is an attractive method for screening libraries and validating hits in drug discovery programs. The methodology has been used successfully in high throughput screens of small molecule libraries, and its application has been extended to report on protein-drug-like-fragment interactions. Here, we review how protein thermal shift has been employed recently in fragment-based drug discovery (FBDD) efforts, and highlight its application to protein-protein interaction targets. Multiple validation of fragment hits by independent means is paramount to ensure efficient and economical progress in a FBDD campaign. We discuss the applicability of thermal shift assays in this light, and discuss more generally what one does when orthogonal approaches disagree

    Rationality as the Rule of Reason

    Get PDF
    The demands of rationality are linked both to our subjective normative perspective (given that rationality is a person-level concept) and to objective reasons or favoring relations (given that rationality is non-contingently authoritative for us). In this paper, I propose a new way of reconciling the tension between these two aspects: roughly, what rationality requires of us is having the attitudes that correspond to our take on reasons in the light of our evidence, but only if it is competent. I show how this view can account for structural rationality on the assumption that intentions and beliefs as such involve competent perceptions of downstream reasons, and explore various implications of the account

    Antiferromagnetism at T > 500 K in the Layered Hexagonal Ruthenate SrRu2O6

    Get PDF
    We report an experimental and computational study of magnetic and electronic properties of the layered Ru(V) oxide SrRu2O6 (hexagonal, P-3 1m), which shows antiferromagnetic order with a N\'eel temperature of 563(2) K, among the highest for 4d oxides. Magnetic order occurs both within edge-shared octahedral sheets and between layers and is accompanied by anisotropic thermal expansivity that implies strong magnetoelastic coupling of Ru(V) centers. Electrical transport measurements using focused ion beam induced deposited contacts on a micron-scale crystallite as a function of temperature show p-type semiconductivity. The calculated electronic structure using hybrid density functional theory successfully accounts for the experimentally observed magnetic and electronic structure and Monte Carlo simulations reveals how strong intralayer as well as weaker interlayer interactions are a defining feature of the high temperature magnetic order in the material.Comment: Physical Review B 2015 accepted for publicatio

    Genetic control of maize shoot apical meristem architecture

    Get PDF
    The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 · Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (629 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions. © 2014 Thompson et al

    Influence of positional correlations on the propagation of waves in a complex medium with polydisperse resonant scatterers

    Get PDF
    We present experimental results on a model system for studying wave propagation in a complex medium exhibiting low frequency resonances. These experiments enable us to investigate a fundamental question that is relevant for many materials, such as metamaterials, where low-frequency scattering resonances strongly influence the effective medium properties. This question concerns the effect of correlations in the positions of the scatterers on the coupling between their resonances, and hence on wave transport through the medium. To examine this question experimentally, we measure the effective medium wave number of acoustic waves in a sample made of bubbles embedded in an elastic matrix over a frequency range that includes the resonance frequency of the bubbles. The effective medium is highly dispersive, showing peaks in the attenuation and the phase velocity as functions of the frequency, which cannot be accurately described using the Independent Scattering Approximation (ISA). This discrepancy may be explained by the effects of the positional correlations of the scatterers, which we show to be dependent on the size of the scatterers. We propose a self-consistent approach for taking this "polydisperse correlation" into account and show that our model better describes the experimental results than the ISA
    corecore