25 research outputs found

    A new set of international Leptosphaeria maculans isolates as a resource for elucidation of the basis and evolution of blackleg disease on Brassica napus

    Get PDF
    © 2023 The Authors. Plant Pathology published by John Wiley & Sons Ltd on behalf of British Society for Plant Pathology. This is an open access article under the terms of the Creative Commons Attribution-Non Commercial-No Derivs License. https://creativecommons.org/licenses/by-nc-nd/4.0/A collection of isolates of the fungi Leptosphaeria maculans and L. biglobosa, which cause blackleg disease on Brassica napus (canola/oilseed rape) and other Brassicaceae species, was assembled to represent the global diversity of these pathogens and a resource for international research. The collection consists of 226 isolates (205 L. maculans and 21 L. biglobosa) from 11 countries. The genomes of all 205 L. maculans isolates were sequenced, and the distribution and identity of avirulence gene alleles were determined based on genotypic information and phenotypic reactions on B. napus lines that hosted specific resistance genes. Whilst the frequencies of some avirulence alleles were consistent across each of the regions, others differed dramatically, potentially reflecting the canola/oilseed rape cultivars grown in those countries. Analyses of the single-nucleotide polymorphism (SNP) diversity within these L. maculans isolates revealed geographical separation of the populations. This "open access" resource provides a standardized set of isolates that can be used to define the basis for how these fungal pathogens cause disease, and as a tool for discovery of new resistance traits in Brassica species.Peer reviewe

    Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin g glycome

    Get PDF
    BACKGROUND: Glycobiology is an underexplored research area in inflammatory bowel disease (IBD), and glycans are relevant to many etiological mechanisms described in IBD. Alterations in N-glycans attached to the immunoglobulin G (IgG) Fc fragment can affect molecular structure and immunological function. Recent genome-wide association studies reveal pleiotropy between IBD and IgG glycosylation. This study aims to explore IgG glycan changes in ulcerative colitis (UC) and Crohn's disease (CD). METHODS: IgG glycome composition in patients with UC (n = 507), CD (n = 287), and controls (n = 320) was analyzed by ultra performance liquid chromatography. RESULTS: Statistically significant differences in IgG glycome composition between patients with UC or CD, compared with controls, were observed. Both UC and CD were associated with significantly decreased IgG galactosylation (digalactosylation, UC: odds ratio [OR] = 0.71; 95% confidence interval [CI], 0.5–0.9; P = 0.01; CD: OR = 0.41; CI, 0.3–0.6; P = 1.4 × 10(−9)) and significant decrease in the proportion of sialylated structures in CD (OR = 0.46, CI, 0.3–0.6, P = 8.4 × 10(−8)). Logistic regression models incorporating measured IgG glycan traits were able to distinguish UC and CD from controls (UC: P = 2.13 × 10(−6) and CD: P = 2.20 × 10(−16)), with receiver–operator characteristic curves demonstrating better performance of the CD model (area under curve [AUC] = 0.77) over the UC model (AUC = 0.72) (P = 0.026). The ratio of the presence to absence of bisecting GlcNAc in monogalactosylated structures was increased in patients with UC undergoing colectomy compared with no colectomy (FDR-adjusted, P = 0.05). CONCLUSIONS: The observed differences indicate significantly increased inflammatory potential of IgG in IBD. Changes in IgG glycosylation may contribute to IBD pathogenesis and could alter monoclonal antibody therapeutic efficacy. IgG glycan profiles have translational potential as IBD biomarkers

    2023 SPARC Book Of Abstracts

    Get PDF

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The evolutionary and functional characterisation of the ecdysteroid kinase-like (EcKL) gene family in insects

    Get PDF
    © 2020 Jack Louis ScanlanMany thousands of gene families across the tree of life still lack robust functional characterisation, and thousands more may be under-characterised, with additional unknown functions not represented in official annotations. Here, I aim to characterise the evolution and functions of the poorly characterised ecdysteroid kinase-like (EcKL) gene family, which has a peculiar taxonomic distribution and is largely known for containing an ecdysteroid 22-kinase gene in the silkworm, Bombyx mori. I hypothesised that EcKLs may also be responsible for insect-specific ‘detoxification-by-phosphorylation’, as well as ecdysteroid hormone metabolism. My first approach was to explore the evolution of the EcKLs in the genus Drosophila (Diptera: Drosophilidae), which contains the well-studied model insect Drosophila melanogaster. Drosophila EcKLs have evolutionary and transcriptional similarities to the cytochrome P450s, a classical detoxification family, and an integrative ‘detoxification score’, benchmarked against the known functions of P450 genes, predicted nearly half of D. melanogaster EcKLs are candidate detoxification genes. A targeted PheWAS approach in D. melanogaster also identified novel toxic stress phenotypes associated with genomic and transcriptomic variation in EcKL and P450 genes. These results suggest many Drosophila EcKLs function in detoxification, or at least have key functions in the metabolism of xenobiotics, and additionally identify a number of novel P450 detoxification candidate genes in D. melanogaster. I then broadened the phylogenomic analysis of EcKLs to a manually annotated dataset containing an additional 128 insect genomes and three other arthropod genomes, as well as a number of transcriptome assemblies. Phylogenetic inference suggested insect EcKLs can be grouped into 13 subfamilies that are differentially conserved between insect lineages, and order-specific analyses for Diptera, Lepidoptera and Hymenoptera revealed both highly conserved and highly variable EcKL clades within these taxa. Using phylogenetic comparative methods, EcKL gene family size was found to vary with detoxification-related traits, such as the sizes of classical detoxification gene families, insect diet, and two estimations of ‘detoxification breadth’ (DB), one qualitative and one quantitative. Additionally, the rate of EcKL duplication was found to be low in lineages with small DB—bees and tsetse flies. These results suggest the EcKL gene family functions in detoxification across insects. Building on my previous ‘detoxification score’ analysis, I used the powerful genetic toolkit in D. melanogaster and developmental toxicology assays to test the hypothesis that EcKL genes in the highly dynamic Dro5 clade are involved in the detoxification of selected plant and fungal toxins. Knockout or misexpression of Dro5 genes, particularly CG13659 (Dro5-7), modulated susceptibility to the methylxanthine alkaloid caffeine, and Dro5 knockout also increased susceptibility to kojic acid, a fungal secondary metabolite. These results validate my evolutionary and integrative analyses, and provide the first experimental evidence for the involvement of EcKLs in detoxification processes. Finally, I aimed to find genes encoding ecdysteroid kinases in D. melanogaster, focusing on Wallflower (Wall/CG13813) and Pinkman (pkm/CG1561), orthologs of a known ecdysteroid 22-kinase gene. Wall and pkm null mutant animals developed normally, but misexpression of Wall caused tissue-specific developmental defects, albeit not those consistent with inactivation of the main ecdysteroid hormones, ecdysone and 20-hydroxyecdysone. In addition, my hypothesis that Wall encodes an ecdysteroid 26-kinase was not supported by hypostasis experiments with a loss-of-function allele of the ecdysteroid 26-hydroxylase/carboxylase gene Cyp18a1. Combined with existing expression and regulatory data, these results suggest Wall encodes an ecdysteroid kinase with an unknown substrate, and hint at previously unknown complexity in ecdysteroid signalling and metabolism in D. melanogaster. Overall, this thesis provides a detailed exploration of the functions of the EcKL gene family in insects, showing that these genes comprise a novel detoxification gene family in multiple taxa, and that they may also contribute to understudied aspects of ecdysteroid metabolism in a model insect. This work also demonstrates the power and potential of integrating evolutionary, genomic, transcriptomic and experimental data when characterising genes of unknown function

    Delivering youth justice for Pacific young people and their families

    No full text
    ‱ Understanding the broader legal system and how it interacts with Pacific young people and their families is important in finding positive and practical solutions. ‱ Specific Pacific social risk and protective factors can assist in developing innovative practice strategies to address criminogenic and recidivist offending behaviour. ‱ Promoting good policy responses to resource effective rehabilitative responses within the legal system is an important approach to youth justice. ‱ Utilising Pacific models of practice will also ensure a culturally appropriate and holistic approach

    The Age of Johnson: A Scholarly Annual (Volume 24)

    No full text
    The move to a new publisher has given The Age of Johnson: A Scholarly Annual the opportunity to recommit to what it does best: present to a wide readership cant-free scholarly articles and essays and searching book reviews, all featuring a wide variety of approaches, written by both seasoned scholars and relative newcomers. Volume 24 features commentary on a range of Johnsonian topics: his reaction to Milton, his relation to the Allen family, his notes in his edition of Shakespeare, his use of Oliver Goldsmith in his Dictionary, and his always fascinating Nachleben. The volume also includes articles on topics of strong interest to Johnson: penal reform, Charlotte Lennox\u27s professional literary career, and the conjectural history of Homer in the eighteenth century. For more than two decades, The Age of Johnson has presented a vast corpus of Johnsonian studies in the broadest sense, as founding editor Paul J. Korshin put it in the preface to Volume 1, and it has retained the interest of a wide readership. In thousands of pages of articles, review essays, and reviews, The Age of Johnson has made a permanent contribution to our understanding of the eighteenth century, and particularly of Samuel Johnson, his circle, and his interests, and has also served as an outlet for writers who are not academics but have something important to say about the eighteenth century. ISSN 0884-5816.https://digitalcommons.bucknell.edu/bucknell-press/1059/thumbnail.jp
    corecore