558 research outputs found

    Dynamical density functional theory analysis of the laning instability in sheared soft matter

    Full text link
    Using dynamical density functional theory (DDFT) methods we investigate the laning instability of a sheared colloidal suspension. The nonequilibrium ordering at the laning transition is driven by non-affine particle motion arising from interparticle interactions. Starting from a DDFT which incorporates the non-affine motion, we perform a linear stability analysis that enables identification of the regions of parameter space where lanes form. We illustrate our general approach by applying it to a simple one-component fluid of soft penetrable particles

    Local phase transitions in driven colloidal suspensions

    Get PDF
    Using dynamical density functional theory and Brownian dynamics simulations, we investigate the influence of a driven tracer particle on the density distribution of a colloidal suspension at a thermodynamic state point close to the liquid side of the binodal. In bulk systems, we find that a localised region of the colloid-poor phase, a ‘cavitation bubble’, forms behind the moving tracer. The extent of the cavitation bubble is investigated as a function of both the size and velocity of the tracer. The addition of a confining boundary enables us to investigate the interaction between the local phase instability at the substrate and that at the particle surface. When both the substrate and tracer interact repulsively with the colloids we observe the formation of a colloid-poor bridge between the substrate and the tracer. When a shear flow is applied parallel to the substrate the bridge becomes distorted and, at sufficiently high shear-rates, disconnects from the substrate to form a cavitation bubble

    Flow induced crystallisation of penetrable particles

    Get PDF
    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory

    A numerical investigation on the use of the virtual element method for topology optimization on polygonal meshes

    Get PDF
    A classical formulation of topology optimization addresses the problem of finding the best distribution of an assigned amount of isotropic material that minimizes the work of the external forces at equilibrium. In general, the discretization of the volume-constrained minimum compliance problem resorts to the adoption of four node displacement-based finite elements, coupled with element-wise density unknowns. When regular meshes made of square elements are used, well-known numerical instabilities arise, see in particular the so-called checkerboarded patterns. On the other hand, when unstructured meshes are needed to cope with geometry of any shape, additional instabilities can steer the optimizer towards local minima instead of the expected global one. Unstructured meshes approximate the strain energy of the members of the arising optimal design with an accuracy that is strictly related to the geometrical features of the discretization, thus remarkably affecting the achieved layouts. In light of the above remarks, in this contribution we consider polygonal meshes and implement the virtual element method (VEM) to solve two classes of topology optimization problems. The robustness of the adopted discretization is exploited to address problems governed by (nearly incompressible and compressible) linear elasticity and problems governed by Stokes equations. Numerical results show the capabilities of the proposed polygonal VEM-based approach with respect to more conventional discretizations

    VEM and topology optimization on polygonal meshes

    Get PDF
    Topology optimization is a fertile area of research that is mainly concerned with the automatic generation of optimal layouts to solve design problems in Engineering. The classical formulation addresses the problem of finding the best distribution of an isotropic material that minimizes the work of the external loads at equilibrium, while respecting a constraint on the assigned amount of volume. This is the so-called minimum compliance formulation that can be conveniently employed to achieve stiff truss-like layout within a two-dimensional domain. A classical implementation resorts to the adoption of four node displacement-based finite elements that are coupled with an elementwise discretization of the (unknown) density field. When regular meshes made of square elements are used, well-known numerical instabilities arise, see in particular the so-called checkerboard patterns. On the other hand, when unstructured meshes are needed to cope with geometry of any shape, additional instabilities can steer the optimizer towards local minima instead of the expected global one. Unstructured meshes approximate the strain energy of truss-like members with an accuracy that is strictly related to the geometrical features of the discretization, thus remarkably affecting the achieved layouts. In this paper we will consider several benchmarks of truss design and explore the performance of the recently proposed technique known as the Virtual Element Method (VEM) in driving the topology optimization procedure. In particular, we will show how the capability of VEM of efficiently approximating elasticity equations on very general polygonal meshes can contribute to overcome the aforementioned mesh-dependent instabilities exhibited by classical finite element based discretization technique

    Shear-induced migration in colloidal suspensions

    Get PDF
    Using Brownian dynamics simulations, we perform a systematic investigation of the shear-induced migration of colloidal particles subject to Poiseuille flow in both cylindrical and planar geometry. We find that adding an attractive component to the interparticle interaction enhances the migration effect, consistent with recent simulation studies of platelet suspensions. Monodisperse, bidisperse and polydisperse systems are studied over a range of shear-rates, considering both steady-states and the transient dynamics arising from the onset of flow. For bidisperse and polydisperse systems, size segregation is observed

    Driven colloidal fluids: construction of dynamical density functional theories from exactly solvable limits

    Get PDF
    The classical dynamical density functional theory (DDFT) provides an approximate extension of equilibrium DFT to treat nonequilibrium systems subject to Brownian dynamics. However, the method fails when applied to driven systems, such as sheared colloidal dispersions. The breakdown of DDFT can be traced back to an inadequate treatment of the flow-induced distortion of the pair correlation functions. By considering the distortion of the pair correlations to second order in the flow-rate we show how to systematically correct the DDFT for driven systems. As an application of our approach we consider Poiseuille flow. The theory predicts that the particles will accumulate in spatial regions where the local shear rate is small, an effect known as shear-induced migration. We compare these predictions to Brownian dynamics simulations with generally good agreement

    Dynamical density functional theory analysis of the laning instability in sheared soft matter

    Get PDF
    Using dynamical density functional theory (DDFT) methods we investigate the laning instability of a sheared colloidal suspension. The nonequilibrium ordering at the laning transition is driven by nonaffine particle motion arising from interparticle interactions. Starting from a DDFT which incorporates the nonaffine motion, we perform a linear stability analysis that enables identification of the regions of parameter space where lanes form. We illustrate our general approach by applying it to a simple one- component fluid of soft penetrable particles
    • …
    corecore