
1. Introduction

The creation of a colloidal crystal generally proceeds via the 

slow process of nucleation and growth within a dense, crowded 

environment [1]. Technological applications requiring peri-

odic order on long length scales (e.g. photonic crystals) are 

hindered by the defects and grain boundaries which inevitably 

develop during the growth process. It is thus desirable to iden-

tify ways by which external fields can be employed to control 

the nucleation dynamics and thus optimize the quality of the 

resulting crystal. One way to achieve this aim is to drive the 

system out of equilibrium using mechanical deformation of 

the sample.

Since the pioneering light scattering investigations of 

Ackerson and Pusey [2] it has been known that the judicious 

application of an oscillatory shear strain can induce three-

dimensional crystalline order in colloidal fluids. In a similar 

spirit, Besseling et  al have performed real-space confocal 

microscopy experiments on colloidal mixtures under oscil-

latory shear [3]. Crucially, in both cases the bulk density of 

the experimental sample lies below that of the equilibrium 

freezing transition, such that these shear-induced crystals 

represent true out-of-equilibrium states; the microstructure 

relaxes back to equilibrium following the cessation of the flow. 

Although Besseling et  al [3] supported their experimental 

findings with simulation data, there currently exists no first-

principles theoretical approach to address this phenom enon. 

In a recent study, Peng et al have used molecular dynamics 

to study the influence of steady simple shear on the crystal 

growth kinetics [4]. However, in contrast to [2, 3], the thermo-

dynamic statepoints considered in [4] were all in the crystal 

region of the phase diagram.

The aforementioned studies of flow-induced crystallisation 

[2, 3] considered simple shear flow, where the (time-dependent) 

shear gradient is constant in space. However, there are many 

situations of interest for which the shear gradient is a func-

tion of position. For example, in the commonly encounter ed 

case of Poiseuille flow along a channel the shear gradient is 

a linear function of the distance from the channel center. It is 

well-known that when the shear-rate varies significantly on 

the scale of a particle diameter, then the particles will begin 

to exhibit a biased diffusion towards regions of low gradient: 

shear-induced migration [5]. The physical origin of this effect 

is that the collision frequency of a given particle with it is 

neighbours is not isotropically distributed over the surface of 

the particle; surface regions subject to a higher shear-rate will 

experience, on average, a greater number of collisions than 

those regions subject to a lower shear-rate [6]. In the case of 
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Poiseuille flow this mechanism leads to an increase in density 

at the centre of the channel.

In this paper we will explore how the particle migration 

induced by Pouseuille flow can interact with the underlying 

equilibrium free energy to generate nonequilibrium ordered 

states in which a crystalline region appears at the center of the 

channel. In addition to presenting a novel kind of nonequilib-

rium state arising from the coupling of shear-rate gradients 

to free energy minima, we can imagine that these nonequi-

librium steady states may be relevant for particle transport 

in certain microfluidic devices. The method we employ is 

dynamical density functional theory, modified along the lines 

of [7–9] to incorporate the non-affine particle motion neces-

sary to capture particle migration effects.

The paper will be organized as follows: in section  2 we 

explain the model, in section 3 we give an overview of the 

employed theory, in section 4 we report our results and finally, 

in section 5, we provide comments and an outlook for future 

work.

2. Model

In order to investigate the process of shear-induced crystal-

lisation we choose to employ a simple, minimal model of pen-

etrable particles, namely the generalized exponential model 

(GEM). Within this model the purely repulsive pair inter-

action potential has an exponential form, with an exponent 

which can be adjusted to tune the strength of the repulsive 

force between particles. The continuous nature of the poten-

tial makes it particularly well suited for numerical studies. We 

consider the GEM model with an exponent of 8, described by 

the pair-potential

φ(r) = ε exp

(
−
( r

R

)8
)

, (1)

where R and ε set the length and energy scales, respectively.

Ordering phenomena in GEM models, especially con-

cerning quasi-crystalline order [10, 11], solidification [12], 

generation of defects and disorder from quenching [13], crys-

tallisation under confinement at interfaces and in wedges [14] 

have been recently addressed. An important feature of pene-

trable particle models, such as the GEM-8, is that at high den-

sities they exhibit a so-called ‘cluster crystal’ phase. Cluster 

crystals differ from more familiar hard-sphere type crystals 

in that each density peak can contain, on average, more than 

one particle. While the multiple occupancy of a given lattice 

site costs a potential energy of order ε per particle pair, the 

resulting gain in entropy dominates to minimize the grand 

potential. This mechanism makes the study of crystallisa-

tion in penetrable particle models more subtle than the case 

of simple hard spheres, for which only entropy plays a role. 

However, penetrabel particle systems have the significant 

benefit that simple mean field approaches can yield accurate 

results.

We consider a 2D GEM-8 fluid system confined between 

a pair of parallel repulsive walls. We choose to work in two 

dimensions as this is the minimal situation in which crystal-

lisation can be studied and reduces the numerical demands of 

integrating the DDFT equations—three-dimensional calcul-

ations would be very expensive. Moreover, the majority of the 

literature concerning the equilibrium GEM-8 model addresses 

the 2D system. The suspension is confined to a channel by the 

following external potential field

Vext(y) =
{

0 0 < y < Ly

∞ otherwise
, (2)

where Ly is the distance between the walls. In a dynamical 

calculation the infinitely repulsive walls described by (2) 

are equivalent to imposing a no-flux boundary condition. 

We choose the shear deformation such that the velocity field 

takes a Poiseuille form, with stick boundary conditions. The 

velocity field is given by

v(y) = 4vm

(
y
Ly
− y2

L2
y

)
, (3)

where vm is the maximal velocity (which occurs in the center 

of the channel).

3. Theory

The dynamical density functional theory (DDFT) provides 

a convenient approximate method to study the dynamical 

response of the particle number density, ρ(r, t), to external 

force fields. The original formulation of DDFT, which can be 

derived from either the Langevin [15, 16] or Smoluchowski 

[17] descriptions, considered time-dependent external poten-

tial fields. Generalization to treat external flow fields (e.g. 

shear) was first made by Rauscher et al by incorporating an 

additional term representing the affine solvent flow field [18]. 

However, it subsequently became apparent that this simple 

approach ignores important non-affine particle motion, which 

renders the approach incapable of describing interaction-

induced currents orthogonal to the affine flow. As a con-

sequence, the DDFT of [18] cannot capture the physics of 

laning, particle migration or other phenomena arising from a 

coupling between flow and interparticle interactions.

These shortcomings were addressed by Krüger, Brader and 

Scacchi in [7–9], who reintroduced the missing non-affine 

motion into DDFT using a dynamical mean-field approx imation. 

In it is most recent form the DDFT equation is given by

∂ρ(r, t)
∂t

+∇ · (ρ(r, t)v(r, t)) = ∇ ·
(
Γρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

)
 

(4)

where v(r) is the solvent velocity field, Γ is the mobility and 
F  is the Helmholtz free energy containing details of the inter-

particle interactions and the external potential field.

The Helmholtz free energy can be split into ideal, excess 

and external field contributions

F = F id + F exc
MF +

∫
dr ρ(r)Vext(r). (5)
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The ideal gas part is known exactly and is given by

F id[ ρ ] = kBT
∫

dr ρ(r) (log (ρ(r))− 1) ,
 

(6)

where we have set the thermal wavelength equal to unity. For 

the GEM-8 model presently under consideration the excess 

part can be well described by the mean-field functional

F exc
MF [ρ] =

1
2

∫
dr

∫
dr′ρ(r)ρ(r′)φ(| r− r′ |). (7)

The central approximation made here is that the two 

body density can be written in factorized form, i.e. 

ρ(2)(r, r′) = ρ(r)ρ(r′). Despite the simplicity of this approx-

imation, it has recently been pointed out that it performs better 

than one would expect [19].

The velocity field can be decomposed into an affine term 

and a fluctuation term, according to

v(r, t) = vaff(r, t) + vfl(r, t). (8)

A mean-field approximation to the non-affine velocity can be 

made by assuming a linear dependence on the local density

v fl(r, t) =
∫

dr′ρ(r′, t)u(r, r′; [γ(r′)]), (9)

where u is a spatially dependent functional of the shear-rate. 

Following Krüger and Brader [8, 9] we further approximate 

this mean-field expression by

v fl(r, t) =
∫

dr′ρ(r′, t)|γ(r′)|κ(r− r′), (10)

where κ(r) is a time-independent, translationally invariant 

kernel depending on the interparticle interaction potential and 
γ(r) is the position dependent shear flow. We note that the 

assumption of translational invariance of the kernel is a rather 

strong assumption, which will lead to errors in the regions 

of strong density inhomogeneity. However, it is a necessary 

step to ensure that the theory remains computationally trac-

table. While the mean-field term is both physically plausible, 

it nevertheless represents an empirical add-on to the micro-

scopically derived original versions of DDFT [15–17]—a 

true microscopic derivation would indeed be very useful. As 

a consequence the detailed form of the convolution kernel κ 

remains unspecified and lacks a rigorous microscopic pre-

scription. One can, however, give a physical interpretation to 

the kernel in terms of binary collision events, which facilitates 

the development of approximations.

The product of the kernel with the shear-rate in (10) has the 

units of velocity. This non-affine velocity arises from the force of 

interaction between a pair of particles when they are driven into 

each other by the flow field (‘flow-interaction coupling’) and 

thus encodes a non-affine motion. Physically, one can envisage 

‘rolling over’ type motion as two spherically symmetric particles 

attempt to follow the affine flow as closely as possible. Noting 

that for over damped systems the velocity and force are equiva-

lent (up to a friction coefficient), a simple ansatz for the kernel is

κ(r) = −α(ρ)∇φ(r). (11)

In general one would expect the coefficient α to have a density 

dependence (not necessarily local). However, in the absence 

of detailed information about this function we choose the sim-

plest possibility and set α = 1. We will see that this already 

leads to some interesting phenomenology and leaves open the 

possibility for fine tuning in order to fit data from numerical 

simulations or experiments.

The equilibrium state corresponds to the long-time limit 

of equation (4) in the absence of flow. Equivalently, the equi-

librium density can be obtained by minimizing the grand 

potential

Ω[ρ] = F [ρ]− μ

∫
dr ρ(r), (12)

where μ is the chemical potential. The minimization generates 

the Euler–Lagrange equation

ρ(r) = exp[βμ− c(1)(r)− βVext(r)], (13)

where β = 1/kBT  and the one-body direct correlation function 

c(1)(r) is given by a convolution with the interaction potential

c(1)(r) = −β

∫
dr′ρ(r′)φ(| r− r′ |). (14)

The bulk phase diagram shown in figure 1 has been calculated 

by solving equation  (13) in the case of vanishing external 

potential. For densities above the spinodal the uniform liquid 

becomes linearly unstable with respect to the inhomogeneous 

crystal-phase density distribution. As previously mentioned, 

because of the soft-core nature of the particles the crystal 

phase consists of clusters of particles occupying the sites of 

a 2D hexagonal lattice. The phase diagram shown in figure 1 

applies to an infinite system and we note that small discrep-

ancies can occur in our numerical DDFT calculations arising 

from finite size effects. As the crystallising system is rather 

sensitive to the exact location of the statepoint we have been 

careful to keep to a minimum finite size effects arising from 

the confinement/periodic boundaries employed in our dynam-

ical calculations. For more details about boundary effects, 

Figure 1. The bulk spinodal line from mean-field theory for the 
GEM-8 model. The circle indicates the statepoint at which we 
perform our numerical calculations. On the left side of the line the 
system is a liquid and on the right it is in the crystal phase.
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we refer the reader to [14], where a detailed study of crys-

tallisation under confinement at interfaces and in wedges is 

performed.

4. Results

We prepare the system at a thermodynamically stable state 

point close to the crystal phase, as shown in figure  1. In 

figure 2 we show the equilibrium (unsheared) density distribu-

tion of a system at this statepoint; average density ρ̄R2 = 3.15, 

and with size (6R, 31.1R). The average density is calculated 

by integrating over the density profile and dividing by the 

system volume. Note that to improve visualization of the 

density profile we saturate the colorbar at a density value of 
ρR2 = 10. This initial density distribution was calculated by 

solving equation  (13) at chemical potential μ = 9.7. As we 

are working quite close to the freezing phase boundary there 

is clear evidence of pre-crystallisation at each wall. We choose 

to perform our calculations quite close to the phase boundary 

for two reasons: (i) it is interesting to see how switching on 

the Poiseuille flow will influence the pre-crystal regions at 

each wall and (ii) the flow-induced crystallisation phenomena 

we wish to investigate can be observed at relatively low shear 

rates; high shear rates generate stability issues which make 

difficult an accurate numerical solution of the DDFT equation.

The integration step used here is dt = 10−3. To avoid 

numerical issues, we switch on the flow using a ramp function 

for the first ten Brownian time units. After this time, the flow 

reaches is maximum value with vm = 20. At this moment, the 

system is only slightly distorted, with the majority of the dist-

ortion around the walls. The density peaks become smeared 

out and a stronger laning effect is visible over the entire 

system, see figure 3.

From t  =  10 onwards the system undergoes a steady 

Poiseuille flow. For about further 25 time units the density 

does not undergo any significant change. At t  =  37.5 (see 

figure  4) the density distribution starts to change consider-

ably as the migration mechanism pushes more particles to the 

center of the channel and the system undergoes a symmetry 

breaking along the flow direction in the central region of the 

channel. The ‘stripes’ which emerge have a parabolic form 

similar to that of the external flow, but can only be observed 

within a relatively short time-window. These structures serve 

as a precursor to the formation of a more crystalline region 

at the center of the channel. As time progresses each of the 

stripes develops some internal structure and distinct density 

peaks begin to emerge: figure 5 shows the situation at t  =  40.

Within approximately 10 time units the density peaks stabi-

lize to form a ‘steady-state’ and no further qualitative change in 

the density is observed. In figure 6 we show a representative state 

at t  =  50. The reader can appreciate a ‘tilting’ in the crystalline 

structure passing from figure 5 to figure 6. From our calcul ations 

it seems that a crystal perfectly aligned with the walls is not 

stable and relaxes to a twisted state. This ‘tilting’ time is difficult 

to extract, since the process’ end is not well defined. Because the 

system is under constant external drive the crystalline structure 

at the channel center is subject to continuous deformation; the 

density peaks try to follow the affine flow, but have to ‘squeeze 

past’ their neighbours in order to do so. This squeezing past is 

not favoured by the equilibrium functional used in DDFT and 

thus gives rise to oscillations in the value of the equilibrium 

free energy functional, as will be shown below. Despite this 

constant rearrangement a general hexagonal packing structure 

can be identified at any given time. For a deeper understanding 

we direct the reader to the supplementary material (stacks.iop.

org/JPhysCM/30/095102/mmedia), where we show a full, time-

dependent evolution of the system in the form of a video.

To provide an alternative visualisation of this phenomenon 

we show in figure  7 one-dimensional density distributions 

Figure 2. Dimensionless density ρR2 of the equilibrium system. 
Close to the substrate we see a pre-crystal region, where the 
particles form a cluster crystal [14]. In the center of the system we 
have a rather uniform density, with some residual oscillations due to 
packing effects. We show the flow direction with an arrow.

Figure 3. ρR2 at time t  =  10. The system has undergone a linearly 
increasing Poiseuille flow, reaching the maximal amplitude, 
vm = 20, at the moment shown here. The pre-crystal region at the 
substrates is less important, and has been replaced by smoother 
stripes.

Figure 4. Dimensionless density ρR2 for t  =  37.5. A symmetry 
breaking along the flow direction occurs at the center of the 
channel. The stripes which form which follow the parabolic flow 
profile.

Figure 5. ρR2 at t  =  40. A second symmetry breaking occurs as 
the stripes destabilize to form density peaks and a crystal structure 
begins to develop.
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obtained by integrating the 2D density along the direction 

of flow. Data is shown for five different times to illustrate 

important stages of the time-evolution. Following the onset 

of flow the density gradually increases in the center of the 

system (from brown to yellow lines) as a consequence of 

shear-induced particle migration. Once the local density 

around the channel center approaches the bulk crystallisation 

phase boundary density peaks start to form in the 2D density 

distribution, which lead to the strong oscillations in the inte-

grated data shown in figure 7 for t  =  40 (see figure 5). For 

later times we enter a state where oscillations get smoothed 

out as a result of averaging over the continuous distortion of 

the crystal structure, which undergone a ‘tilting’ process as 

explained above.

Within the framework of DDFT the flow-induced struc-

tural changes discussed above can be related to changes in 

the free energy of the system. The fact that we can analyze 

dynamic phenomena using the equilibrium concept of a free 

energy is a consequence of the adiabatic approximation under-

lying the DDFT. In figure 8 we show the time-evolution of the 

Helmholtz free energy. For the driven system under considera-

tion we recall that there is no ‘H-theorem’ and that the free 

energy is not required to decrease on approach to the steady 

state; the applied shear flow is constantly adding energy to the 

system. The points in the figure indicate times for which the 2D 

data is shown in the previous figures. The free energy increases 

steadily up to around t  =  20 and then remains constant up to 

around t  =  35. Up until this point in time the density does not 

show significant change, other than the erosion of pre-crystal 

structures at each wall. At around t  =  37.5 the first indication 

of a symmetry breaking occurs as the ‘stripes’ start to appear 

in the center of the channel and this is reflected by a sudden 

increase in the free energy. At t  =  40 the stripes become 

unstable and density peaks develop, leading to another jump in 

free energy. For later times the local crystal is formed and the 

value of the free energy oscillates. These oscillations are due to 

the continual deformation of the crystal as the nonuniform flow 

pushes the central peaks at a larger velocity than those located 

to the left or right of the center. We note that the details of these 

oscillations are somewhat influenced by the finite system size 

employed in our calculations.

5. Discussion

The DDFT is a well established method to calculate approxi-

mately the relaxation to equilibrium of the one-body den-

sity in overdamped systems. Its direct application to driven 

systems is problematic due to the neglegt of nonaffine par-

ticle motion; a phenomenological correction to the theory, as 

embodied by the flow kernel, must be introduced to account 

for these in a mean-field fashion. We have presented a new 

approximation for the nonaffine velocity field, which is appro-

priate for treating systems with soft, penetrable interparticle 

interactions.

By applying our theory to the GEM-8 model under 

Poisseuile flow at statepoints close to the freezing transition we 

have investigated the interaction between crystallisation and 

shear-induced particle migration. The latter mechanism is not 

accounted for in standard DDFT and only enters as a result of 

our mean-field treatment of the non-affine velocity. Following 

the onset of flow we observe that, after a period of transient 

dynamics, a local crystalline ‘steady-state’ can form at the 

center of the channel. We anticipate that this phenom enon, 

which we have not seen reported elsewhere, will be generic 

for a wide class of soft particle models. Whether hard-spheres 

Figure 6. Dimensionless density ρR2 for t  =  50. The system has 
developed a local crystal structure at the centre. As the system is 
under steady driving the crystal structure is constantly deformed 
and the peaks change their relative position as the density attempts 
to follow the affine Pousseuile flow.

Figure 7. Projected densities accross the channel corresponding to 
the different snapshots shown in the preceeding figures.

Figure 8. Difference in the total free energy relative to that of the 
equilibrium state as a function of time. The points represent the free 
energy of the specific cases shown in figures 3–6.
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or similiar systems with strongly repulsive interactions would 

also exhibit this effect remains an open question.

The present study presents much opportunity for develop-

ment and future investigation. Of considerable interest would 

be stochastic simulations to establish the limitations of our 

phenomenological DDFT results. It would also be very inter-

esting to investigate the impact of microstructural ordering 

(laning and local crystallisation) on the rheology of the 

system. For example, one could enquire whether the transition 

to a nonequilibrium crystalline state increases the throughput 

in channel flow at a prescribed pressure. These and other ques-

tions will be the subject of further research.

On a more fundamental level, we are currently employing 

methods of bifurcation/stability analysis to investigate in 

more analytic detail the onset of symmetry breaking in ‘non-

affine DDFT’, i.e. DDFT with a convolutional flow kernel 

term, such as that considered in the present work. We have 

so far focussed on the laning instability under simple shear 

flow [20], but we anticipate that similar techniques could 

be fruitfully employed to study in detail, and with reduced 

numerical effort, more general flow induced crystallisation 

and ordering phenomena. Work in this direction is currently 

in progress.
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