21 research outputs found

    Semi-quantitative mass spectrometry in AML cells identifies new non-genomic targets of the EZH2 methyltransferase

    Get PDF
    Alterations to the gene encoding the EZH2 (KMT6A) methyltransferase, including both gain-of-function and loss-of-function, have been linked to a variety of haematological malignancies and solid tumours, suggesting a complex, context-dependent role of this methyltransferase. The successful implementation of molecularly targeted therapies against EZH2 requires a greater understanding of the potential mechanisms by which EZH2 contributes to cancer. One aspect of this effort is the mapping of EZH2 partner proteins and cellular targets. To this end we performed affinity-purification mass spectrometry in the FAB-M2 HL-60 acute myeloid leukaemia (AML) cell line before and after all-transretinoic acid-induced differentiation. These studies identified new EZH2 interaction partners and potential non-histone substrates for EZH2-mediated methylation. Our results suggest that EZH2 is involved in the regulation of translation through interactions with a number of RNA binding proteins and by methylating key components of protein synthesis such as eEF1A1. Given that deregulated mRNA translation is a frequent feature of cancer and that eEF1A1 is highly expressed in many human tumours, these findings present new possibilities for the therapeutic targeting of EZH2 in AML

    Retinoic acid receptor Ī³ is a therapeutically targetable driver of growth and survival in prostate cancer

    Get PDF
    Background Prostate cancer (PC) tissue contains allā€trans retinoic acid (ATRA) at a very low level (10āˆ’9 M), at least an order of magnitude lower than in adjacent normal healthy prostate cells or benign prostate hyperplasia. When this is coupled with deregulated expression of the intracellular lipidā€binding proteins FABP5 and CRABP2 that is frequently found in PC, this is likely to result in the preferential delivery of ATRA to oncogenic PPARĪ²/Ī“ rather than retinoic acid receptors (RARs). There are three isotypes of RARs (RARĪ±, RARĪ², and RARĪ³) and recent studies have revealed discrete physiological roles. For example, RARĪ± and RARĪ³ promote differentiation and selfā€renewal, respectively, which are critical for proper hematopoiesis. Aims We have previously shown that ATRA stimulates transactivation of RARĪ³ at subā€nanomolar concentrations (EC50 0.24ā€‰nM), whereas an 80ā€fold higher concentration was required for RARĪ±ā€mediated transactivation (EC50 19.3ā€‰nM). Additionally, we have shown that RAR panā€antagonists inhibit the growth of PC cells (at 16ā€34ā€‰nM). These findings, together with the low level of ATRA in PC, led us to hypothesize that RARĪ³ plays a role in PC pathogenesis and that RARĪ³ā€selective antagonism may be an effective treatment. Methods and results We found that concentrations of 10āˆ’9 M and below of ATRA promoted survival/proliferation and opposed adipogenic differentiation of human PC cell lines by a mechanism that involves RARĪ³. We also found that a RARĪ³ā€selective antagonist (AGN205728) potently induced mitochondriaā€dependent, but caspaseā€independent, cell death in PC cell lines. Furthermore, AGN205728 demonstrated synergism in killing PC cells in combination with cytotoxic chemotherapeutic agents. Conclusion We suggest that the use of RARĪ³ā€selective antagonists may be effective in PC (and potentially other cancers), either as a single agent or in combination with cytotoxic chemotherapy

    Suppression of MYC by PI3K/AKT/mTOR pathway inhibition in combination with all-trans retinoic acid treatment for therapeutic gain in acute myeloid leukaemia.

    Get PDF
    Aberrant activity of the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR [PAM]) pathway, as well as suppressed retinoic acid signalling, contribute to enhanced proliferation and the differentiation blockade of immature myeloid cells in acute myeloid leukaemia (AML). Inhibition of the PAM pathway was shown to affect especially mixed-lineage leukaemia-rearranged AML. Here, we sought to test a combined strategy using small molecule inhibitors against members of the PAM signalling pathway in conjunction with all-trans retinoic acid (ATRA) to target a larger group of different AML subtypes. We find that ATRA treatment in combination with inhibition of PI3K (ZSTK474), mTOR (WYE132) or PI3K/mTOR (BEZ235, dactolisib) drastically reduces protein levels of the proto-oncogene MYC. In combination with BEZ235, ATRA treatment led to almost complete eradication of cellular MYC, G1 arrest, loss of clonal capacity and terminal granulocytic differentiation. We demonstrate that PAM inhibitor/ATRA treatment targets MYC via independent mechanisms. While inhibition of the PAM pathway causes MYC phosphorylation at threonine 58 via glycogen synthase kinase 3 beta and subsequent degradation, ATRA reduces its expression. Here, we present an approach using a combination of known drugs to synergistically reduce aberrant MYC levels, thereby effectively blocking proliferation and enabling differentiation in various AML subtypes

    The biguanide polyamine analog verlindamycin promotes differentiation in neuroblastoma via induction of antizyme

    Get PDF
    Deregulated polyamine biosynthesis is emerging as a common feature of neuroblastoma and drugs targeting this metabolic pathway such as DFMO are in clinical and preclinical development. The polyamine analog verlindamycin inhibits the polyamine biosynthesis pathway enzymes SMOX and PAOX, as well as the histone demethylase LSD1. Based on our previous research in acute myeloid leukemia (AML), we reasoned verlindamycin may also unblock neuroblastoma differentiation when combined with all-trans-retinoic acid (ATRA). Indeed, co-treatment with verlindamycin and ATRA strongly induced differentiation regardless of MYCN status, but in MYCN-expressing cells, protein levels were strongly diminished. This process was not transcriptionally regulated but was due to increased degradation of MYCN protein, at least in part via ubiquitin-independent, proteasome-dependent destruction. Here we report that verlindamycin effectively induces the expression of functional tumor suppressorā€”antizyme via ribosomal frameshifting. Consistent with previous results describing the function of antizyme, we found that verlindamycin treatment led to the selective targeting of ornithine decarboxylase (the rate-limiting enzyme for polyamine biosynthesis) as well as key oncoproteins, such as cyclin D and Aurora A kinase. Retinoid-based multimodal differentiation therapy is one of the few interventions that extends relapse-free survival in MYCN-associated high-risk neuroblastoma and these results point toward the potential use of verlindamycin in this regimen.Output Status: Forthcoming/Available Onlin

    Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    Get PDF
    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches

    Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stem cell phenotype in triple negative breast cancer

    Get PDF
    Triple negative breast cancer (TNBC) is characterized by a poorly differentiated phenotype and limited treatment options. Aberrant epigenetics in this subtype represent a potential therapeutic opportunity, but a better understanding of the mechanisms contributing to the TNBC pathogenesis is required. The SIN3 molecular scaffold performs a critical role in multiple cellular processes, including epigenetic regulation, and has been identified as a potential therapeutic target. Using a competitive peptide corresponding to the SIN3 interaction domain of MAD (Tat-SID), we investigated the functional consequences of selectively blocking the paired amphipathic α-helix (PAH2) domain of SIN3. Here, we report the identification of the SID-containing adaptor PF1 as a factor required for maintenance of the TNBC stem cell phenotype and epithelial-to-mesenchymal transition (EMT). Tat-SID peptide blocked the interaction between SIN3A and PF1, leading to epigenetic modulation and transcriptional downregulation of TNBC stem cell and EMT markers. Importantly, Tat-SID treatment also led to a reduction in primary tumor growth and disseminated metastatic diseasein vivo. In support of these findings, knockdown ofPF1expression phenocopied treatment with Tat-SID bothin vitroandin vivo. These results demonstrate a critical role for a complex containing SIN3A and PF1 in TNBC and provide a rational for its therapeutic targeting

    Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma

    Get PDF
    The undruggable nature of oncogenic Myc transcription factors poses a therapeutic challenge in neuroblastoma, a pediatric cancer in which MYCN amplification is strongly associated with unfavorable outcome. Here, we show that CYC065 (fadraciclib), a clinical inhibitor of CDK9 and CDK2, selectively targeted MYCN-amplified neuroblastoma via multiple mechanisms. CDK9 ā€” a component of the transcription elongation complex P-TEFb ā€” bound to the MYCN-amplicon superenhancer, and its inhibition resulted in selective loss of nascent MYCN transcription. MYCN loss led to growth arrest, sensitizing cells for apoptosis following CDK2 inhibition. In MYCN-amplified neuroblastoma, MYCN invaded active enhancers, driving a transcriptionally encoded adrenergic gene expression program that was selectively reversed by CYC065. MYCN overexpression in mesenchymal neuroblastoma was sufficient to induce adrenergic identity and sensitize cells to CYC065. CYC065, used together with temozolomide, a reference therapy for relapsed neuroblastoma, caused long-term suppression of neuroblastoma growth in vivo, highlighting the clinical potential of CDK9/2 inhibition in the treatment of MYCN-amplified neuroblastoma

    3D bioprinting as an emerging standard for cancer modeling and drug testing

    No full text
    Neoplastic diseases are a leading cause of death worldwide accounting for 10 million mortalities in 2020. Despite constantly revised and improved therapeutic regimens, the number of fatal cases increases annually. Therefore, better preclinical models are needed to study tumorigenesis and assess new drugs. Although 2D cell cultures significantly contributed to the understanding of tumor biology, they present high clinical trial failure rates. This is because 2D cannot reproduce the intricate tumor architecture and multiple cell interactions. Nevertheless, novel 3D biofabrication technologies and 3D bioprinted tumor models successfully mirror the complexity of human tumors and are currently revolutionizing preclinical cancer research by using live cells encapsulated in a variety of biomaterials. Since bioinks possess excellent chemical and biophysical ECM-like characteristics, this allows for recreation of the intricate tumor-specific architecture with an unmatched level of control, accuracy, and reproducibility. The resulting cellular constructs approximate actual pathological microenvironment of the tumor and some key in vivo processes such as proliferation, differentiation, and metastasis. 3D bioprinted models of glioblastoma, cervical, ovarian, and breast cancer are already being successfully used to study tumorigenesis and cellular response to antitumor drugs. This success showcases the potential of these novel experimental platforms

    miRNAs in Lymphocytic Leukaemias—The miRror of Drug Resistance

    No full text
    Refractory disease and relapse remain the main causes of cancer therapy failure. Refined risk stratification, treatment regimens and improved early diagnosis and detection of minimal residual disease have increased cure rates in malignancies like childhood acute lymphoblastic leukaemia (ALL) to 90%. Nevertheless, overall survival in the context of drug resistance remains poor. The regulatory role of micro RNAs (miRNAs) in cell differentiation, homeostasis and tumorigenesis has been under extensive investigation in different cancers. There is accumulating data demonstrating the significance of miRNAs for therapy outcomes in lymphoid malignancies and some direct demonstrations of the interplay between these small molecules and drug response. Here, we summarise miRNAs’ impact on chemotherapy resistance in adult and paediatric ALL and chronic lymphocytic leukaemia (CLL). The main focus of this review is on the modulation of particular signaling pathways like PI3K-AKT, transcription factors such as NF-κB, and apoptotic mediators, all of which are bona fide and pivotal elements orchestrating the survival of malignant lymphocytic cells. Finally, we discuss the attractive strategy of using mimics, antimiRs and other molecular approaches pointing at miRNAs as promising therapeutic targets. Such novel strategies to circumvent ALL and CLL resistance networks may potentially improve patients’ responses and survival rates

    Autistic spectrum disorder (ASD) ā€“ Gene, molecular and pathway signatures linking systemic inflammation, mitochondrial dysfunction, transsynaptic signalling, and neurodevelopment

    No full text
    Background: Despite advances in autism spectrum disorder (ASD) research and the vast genomic, transcriptomic, and proteomic data available, there are still controversies regarding the pathways and molecular signatures underlying the neurodevelopmental disorders leading to ASD. Purpose: To delineate these underpinning signatures, we examined the two largest gene expression meta-analysis datasets obtained from the brain and peripheral blood mononuclear cells (PBMCs) of 1355 ASD patients and 1110 controls. Methods: We performed network, enrichment, and annotation analyses using the differentially expressed genes, transcripts, and proteins identified in ASD patients. Results: Transcription factor network analyses in up- and down-regulated genes in brain tissue and PBMCs in ASD showed eight main transcription factors, namely: BCL3, CEBPB, IRF1, IRF8, KAT2A, NELFE, RELA, and TRIM28. The upregulated gene networks in PBMCs of ASD patients are strongly associated with activated immune-inflammatory pathways, including interferon-Ī± signaling, and cellular responses to DNA repair. Enrichment analyses of the upregulated CNS gene networks indicate involvement of immune-inflammatory pathways, cytokine production, Toll-Like Receptor signalling, with a major involvement of the PI3K-Akt pathway. Analyses of the downregulated CNS genes suggest electron transport chain dysfunctions at multiple levels. Network topological analyses revealed that the consequent aberrations in axonogenesis, neurogenesis, synaptic transmission, and regulation of transsynaptic signalling affect neurodevelopment with subsequent impairments in social behaviours and neurocognition. The results suggest a defense response against viral infection. Conclusions: Peripheral activation of immune-inflammatory pathways, most likely induced by viral infections, may result in CNS neuroinflammation and mitochondrial dysfunction, leading to abnormalities in transsynaptic transmission, and brain neurodevelopment
    corecore