98 research outputs found

    Nonresonant Raman spectrum of C60 nanopeapod: C60 polymerization effects

    Get PDF
    We present a force constants model for the vibrational modes in C60 dimer and polymer phases. The results of this model are used to calculate the nonresonant Raman spectra of infinitely long isolated C60 dimer and polymer peapod in the framework of bond-polarization theory by using the spectral moment’s method. The changes of the Raman spectrum in terms of the structure of the C60 molecules inside the nanotubes are identified. We show that the lowest Raman frequency region of the nanotube is more affected by the C60 chain insertion in comparison with the higher one.We present a force constants model for the vibrational modes in C60 dimer and polymer phases. The results of this model are used to calculate the nonresonant Raman spectra of infinitely long isolated C60 dimer and polymer peapod in the framework of bond-polarization theory by using the spectral moment’s method. The changes of the Raman spectrum in terms of the structure of the C60 molecules inside the nanotubes are identified. We show that the lowest Raman frequency region of the nanotube is more affected by the C60 chain insertion in comparison with the higher one

    Raman-Active modes in Homogeneous and Inhomogeneous Bundle of Single-Walled Carbon Nanotubes

    Get PDF
    In the present work, the non-resonant Raman active modes were calculated for several diameters, chiralities and sizes for homogeneous and inhomogeneous bundles of single-walled carbon nanotubes (BSWCNT's), using the spectral moment’s method (SMM). Additional intense Raman active modes are present in the breathing-like modes (BLM) spectra of these systems in comparison with a single fully symmetric A1g mode characteristic of isolated nanotubes (SWCNT's). The dependence of the frequency of these modes in terms of diameters, lengths and number of tubes is investigated. We find that for finite bundle, additional breathing-like modes (BLM's) appear as a specific signature. Finally, the effects of the inhomogeneous bundles on the Raman spectra were studied.In the present work, the non-resonant Raman active modes were calculated for several diameters, chiralities and sizes for homogeneous and inhomogeneous bundles of single-walled carbon nanotubes (BSWCNT's), using the spectral moment’s method (SMM). Additional intense Raman active modes are present in the breathing-like modes (BLM) spectra of these systems in comparison with a single fully symmetric A1g mode characteristic of isolated nanotubes (SWCNT's). The dependence of the frequency of these modes in terms of diameters, lengths and number of tubes is investigated. We find that for finite bundle, additional breathing-like modes (BLM's) appear as a specific signature. Finally, the effects of the inhomogeneous bundles on the Raman spectra were studied

    Size And Chirality Effects On Raman Spectrum Of Double-Wall Carbon Nanotube Bundle

    Get PDF
    We study the tube size and bundling effects on Raman active breathing-like phonon modes (BLM) and tangential-like phonon mode (TLM) of double-walled carbon nanotubes (DWCNT) in the framework of the bond polarization theory, and use the spectral moment’s method. The Raman active modes are calculated for different diameter and chirality of the inner and outer DWCNT tubes. The dependence of the Raman spectrum of bundles of identical DWCNTs as a function of the size of the bundle is analysed and additional breathing-like modes are predicted in DWCNT bundle of finite size.We study the tube size and bundling effects on Raman active breathing-like phonon modes (BLM) and tangential-like phonon mode (TLM) of double-walled carbon nanotubes (DWCNT) in the framework of the bond polarization theory, and use the spectral moment’s method. The Raman active modes are calculated for different diameter and chirality of the inner and outer DWCNT tubes. The dependence of the Raman spectrum of bundles of identical DWCNTs as a function of the size of the bundle is analysed and additional breathing-like modes are predicted in DWCNT bundle of finite size

    Modelling and simulation of vibrationnal properties of carbon nanotubes and derivatives

    Get PDF
    The aim of the present paper is to identify the main Raman vibrational features of carbon nanotubes and derivatives. In this goal, Raman active mode calculations have been performed on different single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) as well as peapods. The comparison between the calculations performed on these different systems allows us to identify the Raman-active modes of each carbon nanomaterials. In SWCNTs, the tangential modes are located around 1590 cm-1 and the radial breathing mode follows A/D law. This latter law is modified in bundle of SWCNTs, DWCNTs or peapods.The aim of the present paper is to identify the main Raman vibrational features of carbon nanotubes and derivatives. In this goal, Raman active mode calculations have been performed on different single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) as well as peapods. The comparison between the calculations performed on these different systems allows us to identify the Raman-active modes of each carbon nanomaterials. In SWCNTs, the tangential modes are located around 1590 cm-1 and the radial breathing mode follows A/D law. This latter law is modified in bundle of SWCNTs, DWCNTs or peapods

    Raman active modes in single-walled boron nitride nanotube bundles

    Get PDF
    We use the spectral moments method in the framework of the bond-polarization theory to calculate polarized nonresonant Raman spectra of chiral and achiral bundles of single walled boron nitride nanotubes (BWBNNTs) as a function of their diameter and chirality. The Spectra are computed for infinite size of BWBNNTs. We used a Lennard-Jones potential to describe the van der waals intertube interactions between tubes in a bundle. We show that the Raman active modes in the low wave number region are very sensitive to the nanotube diameter. We found that for infinite nanotube bundles, additional Radial Breathing Like mode appears in the low wave number region. These results are useful to interpret the experimental Raman spectra of BWBNNTs

    Finite size effects on Raman spectrum of single-walled boron nitride nanotube

    Get PDF
    Using the spectral moments method, we present calculations of Raman active modes of Single Walled Boron Nitride Nanotube (SW-BNNT). The Spectra are computed for chiral and achiral nanotubes in terms of their diameter and length. The behaviors of low frequency Raman active modes characteristic, in terms of the tube diameter revealed that these frequencies are diameter dependent. We show that the number of Raman active modes, their frequencies, and intensities depend on the length and chirality of the nanotubes. These predictions are useful to interpret the experimental Raman spectra of BNNTs.Using the spectral moments method, we present calculations of Raman active modes of Single Walled Boron Nitride Nanotube (SW-BNNT). The Spectra are computed for chiral and achiral nanotubes in terms of their diameter and length. The behaviors of low frequency Raman active modes characteristic, in terms of the tube diameter revealed that these frequencies are diameter dependent. We show that the number of Raman active modes, their frequencies, and intensities depend on the length and chirality of the nanotubes. These predictions are useful to interpret the experimental Raman spectra of BNNTs

    Resuscitation of Newborn Piglets. Short-Term Influence of FiO2 on Matrix Metalloproteinases, Caspase-3 and BDNF

    Get PDF
    Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection.Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03.The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome

    The Potential Role of Metalloproteinases in Neurogenesis in the Gerbil Hippocampus Following Global Forebrain Ischemia

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus. PRINCIPAL FINDINGS: We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage. CONCLUSION: Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus
    • …
    corecore