Nonresonant Raman spectrum of C60 nanopeapod: C60 polymerization effects

Abstract

We present a force constants model for the vibrational modes in C60 dimer and polymer phases. The results of this model are used to calculate the nonresonant Raman spectra of infinitely long isolated C60 dimer and polymer peapod in the framework of bond-polarization theory by using the spectral moment’s method. The changes of the Raman spectrum in terms of the structure of the C60 molecules inside the nanotubes are identified. We show that the lowest Raman frequency region of the nanotube is more affected by the C60 chain insertion in comparison with the higher one.We present a force constants model for the vibrational modes in C60 dimer and polymer phases. The results of this model are used to calculate the nonresonant Raman spectra of infinitely long isolated C60 dimer and polymer peapod in the framework of bond-polarization theory by using the spectral moment’s method. The changes of the Raman spectrum in terms of the structure of the C60 molecules inside the nanotubes are identified. We show that the lowest Raman frequency region of the nanotube is more affected by the C60 chain insertion in comparison with the higher one

    Similar works