448 research outputs found
Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries
We calculate the expected nHz--Hz gravitational wave (GW) spectrum from
coalescing Massive Black Hole (MBH) binaries resulting from mergers of their
host galaxies. We consider detection of this spectrum by precision pulsar
timing and a future Pulsar Timing Array. The spectrum depends on the merger
rate of massive galaxies, the demographics of MBHs at low and high redshift,
and the dynamics of MBH binaries. We apply recent theoretical and observational
work on all of these fronts. The spectrum has a characteristic strain
, just below the detection limit from
recent analysis of precision pulsar timing measurements. However, the amplitude
of the spectrum is still very uncertain owing to approximations in the
theoretical formulation of the model, to our lack of knowledge of the merger
rate and MBH population at high redshift, and to the dynamical problem of
removing enough angular momentum from the MBH binary to reach a GW-dominated
regime.Comment: 31 Pages, 8 Figures, small changes to match the published versio
Electrical photosemiconducting and paramagnetic properties of polypyromellitimides
Semiconducting properties with dark and photoconductivity, type r, were observed in polypyromellitimides (PPMI) and explained by a donor-acceptor interreaction in the PPMI between electron acceptor promellitimide fragments and electron donor diamide in adjacent macromolecules
Massive graviton as a testable cold dark matter candidate
We construct a consistent model of gravity where the tensor graviton mode is
massive, while linearized equations for scalar and vector metric perturbations
are not modified. The Friedmann equation acquires an extra dark-energy
component leading to accelerated expansion. The mass of the graviton can be as
large as , being constrained by the pulsar timing
measurements. We argue that non-relativistic gravitational waves can comprise
the cold dark matter and may be detected by the future gravitational wave
searches.Comment: 4 pages, final version to appear in PR
Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays
We describe several new techniques which accelerate Bayesian searches for
continuous gravitational-wave emission from supermassive black-hole binaries
using pulsar timing arrays. These techniques mitigate the problematic increase
of search-dimensionality with the size of the pulsar array which arises from
having to include an extra parameter per pulsar as the array is expanded. This
extra parameter corresponds to searching over the phase of the
gravitational-wave as it propagates past each pulsar so that we can coherently
include the pulsar-term in our search strategies. Our techniques make the
analysis tractable with powerful evidence-evaluation packages like MultiNest.
We find good agreement of our techniques with the parameter-estimation and
Bayes factor evaluation performed with full signal templates, and conclude that
these techniques make excellent first-cut tools for detection and
characterisation of continuous gravitational-wave signals with pulsar timing
arrays. Crucially, at low to moderate signal-to-noise ratios the factor by
which the analysis is sped up can be > 100, permitting rigorous programs of
systematic injection and recovery of signals to establish robust detection
criteria within a Bayesian formalism.Comment: 17 pages, 10 figures, 1 table. Minor changes to reflect published
versio
Modelling of the evolution of a droplet cloud in a turbulent flow
The effects of droplet inertia and turbulent mixing on the droplet number density distribution in a turbulent flow field are studied. A formulation of the turbulent convective diffusion equation for the droplet number density, based on the modified Fully Lagrangian Approach, is proposed. The Fully Lagrangian Approach for the dispersed phase is extended to account for the Hessian of transformation from Eulerian to Lagrangian variables. Droplets with moderate inertia are assumed to be transported and dispersed by large scale structures of a filtered field in the Large Eddy Simulation (LES) framework. Turbulent fluctuations, not visible in the filtered solution for the droplet velocity field, induce an additional diffusion mass flux and hence additional dispersion of the droplets. The Lagrangian formulation of the transport equation for the droplet number density and the modified Fully Lagrangian Approach (FLA) make it possible to resolve the flow regions with intersecting droplet trajectories in the filtered flow field. Thus, we can cope successfully with the problems of multivalued filtered droplet velocity regions and caustic formation. The spatial derivatives for the droplet number density are calculated by projecting the FLA solution on the Eulerian mesh, resulting in a hybrid Lagrangian–Eulerian approach to the problem. The main approximations for the method are supported by the calculation of droplet mixing in an unsteady one-dimensional flow field formed by large-scale oscillations with an imposed small-scale modulation. The results of the calculations for droplet mixing in decaying homogeneous and isotropic turbulence are validated by the results of Direct Numerical Simulations (DNS) for several values of the Stokes number
Faraday rotation, stochastic magnetic fields and CMB maps
The high- and low-frequency descriptions of the pre-decoupling plasma are
deduced from the Vlasov-Landau treatment generalized to curved space-times and
in the presence of the relativistic fluctuations of the geometry. It is
demonstrated that the interplay between one-fluid and two-fluid treatments is
mandatory for a complete and reliable calculation of the polarization
observables. The Einstein-Boltzmann hierarchy is generalized to handle the
dispersive propagation of the electromagnetic disturbances in the
pre-decoupling plasma. Given the improved physical and numerical framework, the
polarization observables are computed within the magnetized CDM
paradigm (mCDM). In particular, the Faraday-induced B-mode is
consistently estimated by taking into account the effects of the magnetic
fields on the initial conditions of the Boltzmann hierarchy, on the dynamical
equations and on the dispersion relations. The complete calculations of the
angular power spectra constitutes the first step for the derivation of
magnetized maps of the CMB temperature and polarization which are here obtained
for the first time and within the minimal mCDM model. The obtained
results set the ground for direct experimental scrutiny of large-scale
magnetism via the low and high frequency instruments of the Planck explorer
satellite.Comment: 53 pages, 15 included figure
Colloquium: Comparison of Astrophysical and Terrestrial Frequency Standards
We have re-analyzed the stability of pulse arrival times from pulsars and
white dwarfs using several analysis tools for measuring the noise
characteristics of sampled time and frequency data. We show that the best
terrestrial artificial clocks substantially exceed the performance of
astronomical sources as time-keepers in terms of accuracy (as defined by cesium
primary frequency standards) and stability. This superiority in stability can
be directly demonstrated over time periods up to two years, where there is high
quality data for both. Beyond 2 years there is a deficiency of data for
clock/clock comparisons and both terrestrial and astronomical clocks show equal
performance being equally limited by the quality of the reference timescales
used to make the comparisons. Nonetheless, we show that detailed accuracy
evaluations of modern terrestrial clocks imply that these new clocks are likely
to have a stability better than any astronomical source up to comparison times
of at least hundreds of years. This article is intended to provide a correct
appreciation of the relative merits of natural and artificial clocks. The use
of natural clocks as tests of physics under the most extreme conditions is
entirely appropriate; however, the contention that these natural clocks,
particularly white dwarfs, can compete as timekeepers against devices
constructed by mankind is shown to be doubtful.Comment: 9 pages, 2 figures; presented at the International Frequency Control
Symposium, Newport Beach, Calif., June, 2010; presented at Pulsar Conference
2010, October 12th, Sardinia; accepted 13th September 2010 for publication in
Reviews of Modern Physic
Reconnection of Non-Abelian Cosmic Strings
Cosmic strings in non-abelian gauge theories naturally gain a spectrum of
massless, or light, excitations arising from their embedding in color and
flavor space. This opens up the possibility that colliding strings miss each
other in the internal space, reducing the probability of reconnection. We study
the topology of the non-abelian vortex moduli space to determine the outcome of
string collision. Surprisingly we find that the probability of classical
reconnection in this system remains unity, with strings passing through each
other only for finely tuned initial conditions. We proceed to show how this
conclusion can be changed by symmetry breaking effects, or by quantum effects
associated to fermionic zero modes, and present examples where the probability
of reconnection in a U(N) gauge theory ranges from 1/N for low-energy
collisions to one at higher energies.Comment: 25 Pages, 3 Figures. v2: comment added, reference adde
- …
