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We describe several new techniques which accelerate Bayesian searches for continuous
gravitational-wave emission from supermassive black-hole binaries using pulsar timing arrays. These
techniques mitigate the problematic increase of search-dimensionality with the size of the pulsar ar-
ray which arises from having to include an extra parameter per pulsar as the array is expanded.
This extra parameter corresponds to searching over the phase of the gravitational-wave as it prop-
agates past each pulsar so that we can coherently include the pulsar-term in our search strategies.
Our techniques make the analysis tractable with powerful evidence-evaluation packages like Multi-
Nest. We find good agreement of our techniques with the parameter-estimation and Bayes factor
evaluation performed with full signal templates, and conclude that these techniques make excellent
first-cut tools for detection and characterisation of continuous gravitational-wave signals with pulsar
timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is
sped up can be & 100, permitting rigorous programs of systematic injection and recovery of signals
to establish robust detection criteria within a Bayesian formalism.

PACS numbers:

I. INTRODUCTION

The last several years have seen a growing effort to
develop robust and powerful data-analysis techniques
for the purpose of detection and characterisation of
gravitational-waves (GWs) using ensembles of precisely
timed Galactic millisecond pulsars. When a GW passes
the Earth-pulsar line of sight, it causes a perturbation
to the intervening space-time metric which may leave
a measurable imprint on the time-of-arrival (TOA) of
radio pulses from regularly observed millisecond pulsars
[1–4]. With a pulsar timing array (PTA) [5] we effec-
tively create a Galactic-scale GW detector, sensitive in
the ∼ 1− 100 nHz band. There are three separate PTA
efforts underway: the European Pulsar Timing Array
(EPTA) [6], the Parkes Pulsar Timing Array (PPTA)
[7] and the North American Nanohertz Observatory for
Gravitational waves (NANOGrav) [8]. There are also on-
going efforts to combine the techniques and data from all
three PTAs within the umbrella consortium of the Inter-
national Pulsar Timing Array (IPTA) [9].

The current focus of PTA searches is to uncover evi-
dence for a nanohertz stochastic GW background, most

∗email: stephen.r.taylor@jpl.nasa.gov
†Einstein fellow

likely composed of many inspiraling supermassive black-
hole (SMBH) binary signals overlapping in the frequency-
domain which cannot be resolved separately [10–12].
While this background may dominate at the lowest de-
tectable frequencies (where the characteristic strain is ex-
pected to be largest) at higher frequencies the stochastic-
ity of the signal begins to break down, and in individual
Monte Carlo realisations of SMBH binary populations
we see single bright sources rising above the level of the
unresolved background to become the dominant signal
[13–15]. It stands to reason then that several massive
nearby binaries may be bright enough to resolve with
PTAs, presenting a unique opportunity to probe the very
early inspiral regime of their coalescence, and thereby of-
fering a complementary probe of the massive black-hole
population to eLISA/NGO [e.g., 16, 17].

The earliest attempts to constrain the properties of
single resolvable sources with PTAs focused on nearby
candidate systems. Lommen and Backer [18] investi-
gated the level of timing-residuals expected from a binary
system in Sgr A∗, finding that such a system would be
beyond the sensitivity of near-future observations, while
other nearby systems may offer a better chance of host-
ing a detectable binary. A much lauded result of pulsar-
timing analysis was when the nearby radio galaxy 3C
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66B was ruled-out as hosting a 1.05 year orbital-period1

SMBH binary system at greater than 95% confidence
[19].

Techniques to infer the presence of the expected pe-
riodic TOA-deviations induced by a binary source have
included both frequentist and Bayesian approaches. Due
to the irregular sampling of pulsar TOAs, methods which
have implemented power spectral summing [20] or “har-
monic summing” [19] have used a Lomb-Scargle peri-
odogram to avoid undesirable spectral leakage. We can
also maximise our likelihood statistic over nuisance am-
plitude parameters to form the F-statistic [21], which has
been applied to the detection of nearly-periodic signals in
LIGO/Virgo/GEO data [e.g., 22–24], in the eLISA band
[e.g., 25], and more recently in the nanohertz-sensitive
PTA band [26, 27]. Time-domain techniques are now
the favoured approach, and it has been realised that co-
herently including the “pulsar-term” contribution to the
timing-residuals from when the GW passed the pulsar
is hugely important for detection, sky-localisation, and
distance determination [28, 29].

This pulsar-term arises when we integrate the response
of pulsar-timing measurements to a GW over the path of
the photons, giving contributions to the TOA deviations
from either end of the Earth-pulsar timing baseline. The
Earth-term adds coherently, but in previous analyses the
pulsar-terms have been ignored as a form of self-noise
whose contributions sum incoherently from separate pul-
sars. However, coherently including the pulsar-term can
be regarded as the temporal equivalent of aperture syn-
thesis [28], increasing the baseline of PTA observations
by thousands of years, and hence allowing us to track
the orbital evolution of binary sources via the imprint of
the GW in each distinct pulsar. Full Bayesian parameter
estimation and evidence techniques now exist which in-
clude the pulsar-term by searching over each pulsar dis-
tance [30]. However these typically require significant
computational resources to explore the large-dimensional
parameter space, and highly-tuned search algorithms to
ensure phase coherence when searching over the distance.
We side-step these issues by presenting fast techniques
designed for a rapid first-analysis of the data, returning
Bayes factor and parameter-estimation results which are
in good agreement with full searches.

This paper is arranged as follows. In Sec. II we re-
view the theory of timing-residuals induced by single re-
solvable GWs, along with templates to search for bina-
ries which may or may not be evolving over the Earth-
pulsar light travel-time. We also introduce our tech-
niques, based on marginalising over the phase variables
from each distinct pulsar, thereby collapsing the dimen-
sionality of searches and accelerating evidence recovery.

1 Alarm bells always ring in pulsar-timing analysis when period-
icities close to 1 year appear, since a necessary step involves
converting topocentric TOAs to barycentric TOAs.

In Sec. III we compare the results of our model-selection
with full searches, and investigate any potential biases in
our parameter estimation. We state our conclusions in
Section IV.

In the following we define G = c = 1.

II. THE SIGNAL

The transverse-traceless (TT) gauge GW-tensor can
be described as a linear superposition of “plus”
and “cross” polarisation modes, with associated
polarisation-amplitudes, h{+,×}, and basis-tensors,

e
{+,×}
ab (Ω̂). In the context of single-source searches,

the direction of GW-propagation, Ω̂, is written
as [−(sin θ cosφ)x̂− (sin θ sinφ)ŷ − (cos θ)ẑ] such that
(θ, φ) = (π/2 − DEC,RA) denotes the sky-location of
the source in spherical polar coordinates.

As the GW propagates between the Earth and pulsar
it creates a perturbation in the metric which causes a
change in the proper distance to the pulsar, which in
turn leads to a shift in the perceived pulsar rotational
frequency. This fractional frequency shift of a signal from
a pulsar in the direction of unit vector p̂, induced by the
passage of a single GW propagating in the direction of Ω̂
is [31, 32],

z(t,Ω) =
1

2

p̂ap̂b

1 + Ω̂ · p̂
∆hab(t,Ω), (1)

where ∆hab ≡ hab(te, Ω̂) − hab(tp, Ω̂) is the difference in
the metric perturbation evaluated at time te when the
GW passed the solar system barycentre (SSB) and time
tp when the GW passed the pulsar. From simple geo-

metrical arguments, we can write tp = te − L(1 + Ω̂ · p̂),
where L is the distance to the pulsar. The integral of
this redshift over time gives the GW contribution to the
recorded pulse TOA. Consequently, this means that the
timing-models which have been constructed to describe
deterministic contributions to the pulsar TOAs (e.g.,
quadratic spindown) will be slightly mismatched because
we have not factored in the influence of GWs. This effect
is observed in the timing-residuals which are the differ-
ence between the raw measured TOAs and the best-fit
deterministic timing-model. These residuals encode the
influence of noise and all unmodelled phenomena which
influence the pulsar TOAs. The pulsar timing-residuals
induced by a single GW source can be written as,

s(t, Ω̂) = F+(Ω̂)∆s+(t) + F×(Ω̂)∆s×(t) (2)

where ∆sA(t) = sA(tp) − sA(te), and t{p,e} denote the
times at which the GW passes the pulsar and the Earth,
respectively. The functions FA(Ω̂) are “antenna pattern”
functions encoding the geometrical sensitivity of a par-
ticular pulsar to a propagating GW, defined as,

FA(Ω̂) ≡ 1

2

p̂ap̂b

1 + Ω̂ · p̂
eAab(Ω̂). (3)
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SMBH binaries are the primary candidate for
nanohertz GWs. The population in this band are typ-
ically massive (& 108M�), and in the early, adiabatic
inspiral portion of their orbital evolution. Assuming cir-
cular orbits, the typical orbital velocity of these systems
scales as [28],

v ' 2.5× 10−2

(
f

10−8 Hz

)1/3(
M

108M�

)1/3

, (4)

such that we are dealing with only mildly-relativistic bi-
naries, with v << 1. Hence, the influence of BH-spin
on the GW signal, which modifies the waveform at 1.5
pN (∝ v3), will be completely negligible for PTA obser-
vations, while orbital plane precession due to spin-orbit
coupling may only be a consideration for the Square Kilo-
metre Array (SKA) [33, 34]. Preliminary assessments of
the importance of binary eccentricity indicate that the
majority of the GW power will remain confined to the
harmonic at twice the binary orbital frequency [33], how-
ever there is a growing concern that couplings between a
binary and its environment can induce significant eccen-
tricity, which may require this parameter to be included
in waveform templates [35–37]. We ignore this effect here,
and concentrate on circular, non-spinning SMBH bina-
ries.

The periodically varying pulsar timing-residuals in-
duced by a SMBH binary are derived from the quadrupo-
lar waveform, and have the form [27, 28, 38],

s+(t) =
M5/3

DLω(t)1/3

[
− sin [2 (Φ(t)− φn)]

(
1 + cos2 ι

)
cos 2ψ

−2 cos [2 (Φ(t)− φn)] cos ι sin 2ψ]

s×(t) =
M5/3

DLω(t)1/3

[
− sin [2 (Φ(t)− φn)]

(
1 + cos2 ι

)
sin 2ψ

+2 cos [2 (Φ(t)− φn)] cos ι cos 2ψ] , (5)

where ψ is the GW polarisation angle; ι is the bi-
nary orbital-inclination angle; φn is the orbital phase
at the line of nodes (defined as the intersection of the
orbital plane with the tangent plane of the sky [38]);
M = (m1m2)3/5/(m1 +m2)1/5 is the binary chirp mass
defined in terms of the individual SMBH masses m{1,2};
and DL is the luminosity distance to the source. Note
that the chirp mass and orbital frequency are defined in
terms of their observed values, where the rest-frame val-
ues are given by Mr = M/(1 + z), ωr = (1 + z)ω, and
z is the cosmological redshift. In a Universe with zero
curvature the luminosity distance is defined in terms of
the radial comoving distance Dc by DL = (1 + z)Dc.

The rate of change of the binary orbital frequency due
to GW emission is,

ω̇ =
96

5
M5/3ω11/3, (6)

with which we can derive the orbital frequency and

phase,2 at a given time, t,

ω(t) = ω0

(
1− 256

5
M5/3ω

8/3
0 (t− t0)

)−3/8

, (7)

Φ(t) ≡
∫ t

t0

ω(t′)dt′ = Φ0 +
1

32M5/3

(
ω
−5/3
0 − ω(t)−5/3

)
.

(8)

The characteristic chirp timescale of an inspiraling bi-
nary is [30],

τchirp ∼
ω0

ω̇0
= 3.2×105 yr

( M
108M�

)−5/3(
f0

10−8 Hz

)−8/3

,

(9)
which shows us that frequency and amplitude chirping
of the binary over the course of typical PTA observa-
tion times (10 − 20 years) will be negligible compared
to PTA frequency resolution (∼ 1/T ) [20, 33], and can
be safely ignored. Hence, we are looking for essentially
monochromatic signals, and as such the Earth-term or-
bital frequency and phase are,

ωe(t) = ω0, Φe(t) = Φ0 + ω0(t− t0). (10)

The corresponding variables for the pulsar-term must
take into account the fact that the GW imprints a snap-
shot of the binary’s orbital evolution as it passes each
pulsar. As such, we deal with the retarded time tp which
causes the pulsar-term to differ in phase from the Earth-
term (and all other pulsar-terms) even if there is neg-
ligible frequency evolution over the Earth-pulsar light
travel-time (highly unlikely). Frequency chirping is a
long timescale effect for these systems. Indeed the value
of (ω0 − ω(tp))/ω0 for a 108M� chirp mass binary with

ω0 = 10−7 Hz and L(1 + Ω̂ · p̂) = 2 kpc is ∼ 0.03. For the
highest-mass system considered in this work (7× 108M�
chirp mass binary with ω0 = 2π × 10−8 Hz, and most
pulsars satisfying L(1 + Ω · p̂) ≤ 1 kpc) the fractional
difference between the Earth- and pulsar-term frequen-
cies is < 10%. Hence we can Taylor-expand Eq. (7) (and
ignore evolution over the PTA observation window) to
give,

ωp(t) ' ω0 − ω̇0L(1 + Ω̂ · p̂),
Φp(t) ' Φp,0 + ω0(t− t0)− ω̇0L(1 + Ω̂ · p̂)(t− t0), (11)

where L is the pulsar distance. The constant term Φp,0
denotes the initial binary orbital phase of the pulsar-
term, and is defined as

Φp,0 = Φ0 +
1

32M5/3

(
ω
−5/3
0 − ω−5/3

p

)
. (12)

We note that ωp(t) is always less than or equal to the
Earth-term frequency, such that a coherent measurement

2 We assume the phase evolution is driven entirely by GW emis-
sion.



4

of the pulsar-term would afford an insight into the history
of the binary’s evolution.

We now have all the definitions we need to construct
signal templates describing the pulsar-timing residuals
induced by either a non-evolving or evolving SMBH bi-
nary. In all of the following we collect Φ0 and φn into
one constant initial phase variable, φ0 = φn − Φ0.

A. Non-evolving template

Consider the low-frequency (or low chirp-mass) regime,
where evolution of the source frequency is small, such
that the frequencies of the GW when it passes the pul-
sar and the Earth are approximately the same. We can
include the pulsar-term in our single-source template by
modelling the signal in a single pulsar as the sum of two
sinusoids of different phases. The signal template in the
αth pulsar is [27],

sα =

2∑

i=1

aiα(ζ, ι, ψ, φ0, φα, θ, φ)Aiα(t, ω0), (13)

where,

a1α = [q1α (1− cosφα)− q2α sinφα]

a2α = [q2α (1− cosφα) + q1α sinφα]

q1α =
(
F+
α a1 + F×α a3

)

q2α =
(
F+
α a2 + F×α a4

)
,

(14)

and,

a1 = ζ
[(

1 + cos2 ι
)

cos 2φ0 cos 2ψ + 2 cos ι sin 2φ0 sin 2ψ
]

a2 = −ζ
[(

1 + cos2 ι
)

sin 2φ0 cos 2ψ − 2 cos ι cos 2φ0 sin 2ψ
]

a3 = ζ
[(

1 + cos2 ι
)

cos 2φ0 sin 2ψ − 2 cos ι sin 2φ0 cos 2ψ
]

a4 = −ζ
[(

1 + cos2 ι
)

sin 2φ0 sin 2ψ + 2 cos ι cos 2φ0 cos 2ψ
]
.

(15)

In the above equations, φα = 2(Φ0 − Φpα,0) and ζ =

M5/3/DL. The signal basis-functions are defined as,

A1
α =

1

ω
1/3
0

sin(2ω0t), A2
α =

1

ω
1/3
0

cos(2ω0t). (16)

We employ the log-likelihood ratio as a statistic for
parameter-estimation and detection. This statistic is de-
fined as the logarithm of the ratio of the likelihood of a
signal being present to the signal being absent,

ln Λ ≡ ln p(~r|~s)− ln p(~r|~0) =

Np∑

α=1

[
(rα|sα)− 1

2
(sα|sα)

]
,

(17)
where we have defined an inner product such that (x|y) =
xTG(GCG)−1GT y, where: (i) C is a covariance matrix

describing stochastic influences to the pulsar TOAs; (ii)
G is a timing-model marginalisation matrix [39]; and (iii)
rα is a vector of timing-residuals in the αth pulsar. With
well-constrained pulsar noise properties (fixed C) we can
use Λ within a Bayesian search to recover parameter pos-
terior distributions. In this way we can also use Λ to
substitute for the full likelihood in the Bayesian evidence
evaluation to recover the Bayes factor, allowing for a di-
rect recovery of detection significance in a Bayesian way.
Implicit in the derivation of Eq. (17) is the cancellation
of the normalisation factor of the full likelihood (which
is a function of C). This remains true when we form the
evidence ratio, since we integrate over the deterministic
signal parameter space and assume that stochastic noise
properties are fixed. Explicitly,

B =
Zsignal

Znull

=

∫
exp [−(r − s(~µ)|r − s(~µ))/2]π(~µ)dNµ∫

exp [−(r|r)/2]π(~µ)dNµ
(18)

=

∫
exp [(r|s(~µ))− (1/2)(s(~µ)|s(~µ))]π(~µ)dNµ∫

π(~µ)dNµ

=

∫
Λ(~µ)π(~µ)dNµ.

For the purposes of later analysis, we now write ln Λ
explicitly in terms of the pulsar-phase parameters, φα.
Defining

N i
α = (rα|Aiα),

M ij
α = (Aiα|Ajα), (19)

and

εi
j =

(
0 1
−1 0

)
, (20)

such that

ln Λ =

Np∑

α=1

{ [
qiαqjαM

ij
α − qiαN i

α

]
cosφα

+
[
qkαqjαM

ij
α − qkαN i

α

]
εi
k sinφα

− 1

2
qiαqjαM

ij
α cos2 φα −

1

2
qkαqlαM

ij
α εi

kεj
l sin2 φα

− qiαqkαM ij
α εj

k sinφα cosφα + qiαN
i
α −

1

2
qiαqjαM

ij
α

}
.

(21)

whereNp is the number of pulsars in our array. With neg-
ligible frequency evolution, the binary’s parameters are
{ζ, ω0, θ, φ, ι, ψ, ψ0}, however we must also take into ac-
count an additional phase variable per pulsar, φα. Hence,
in a parameter-estimation search or an evaluation of the
Bayes factor, conventional techniques would require a
search over 7 + Np dimensions. For large arrays or ex-
pensive likelihood evaluations this can be a costly exer-
cise, necessitating multi-threading linear-algebra opera-
tions to accelerate the likelihood evaluations, or multi-
core machines to perform efficient parallel-tempering for
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the evaluation of Bayes factors. One should also note that
the popular and effective Bayesian inference tool Multi-
Nest can struggle in these kinds of high-dimensional
problems (even in constant efficiency mode) when we
have complicated parameter spaces or lengthy likelihood
evaluation times, as the set of live-points used in the
nested sampling algorithm very slowly accumulates the
last few units of log-evidence.3

B. Evolving template

We can also write down an evolving-signal template
which takes into account the orbital evolution of the
SMBH binary during the Earth-pulsar light travel-time,
but still assumes evolution during the actual PTA ob-
servation window is negligible. For this evolving-signal
template, we define,

A1
α =

1

ω
1/3
0

sin(2ω0t), A2
α =

1

ω
1/3
0

cos(2ω0t)

B1
α =

1

ω
1/3
p,α

sin(2ωp,αt), B2
α =

1

ω
1/3
p,α

cos(2ωp,αt), (22)

where ωp,α = ω0 − ω̇0Lα(1 + Ω̂ · p̂α), ω̇0 =

(96/5)M5/3ω
11/3
0 , and Lα is the distance to the αth pul-

sar.

In addition to M ij and N i for the non-evolving case,
we define,

Oijα = (Biα|Bjα),

P iα = (rα|Biα),

Qijα = (Aiα|Bjα). (23)

Now, expressing the log-likelihood ratio explicitly in
terms of the pulsar-phase parameters, φα, gives the fol-
lowing,

ln Λ =

Np∑

α=1

{ [
qiαqjαQ

ij
α − qiαP iα

]
cosφα

+
[
qkαqjαQ

ji
α − qkαP iα

]
εi
k sinφα

− 1

2
qiαqjαO

ij
α cos2 φα −

1

2
qkαqlαO

ij
α εi

kεj
l sin2 φα

− qiαqkαOijα εjk sinφα cosφα + qiαN
i
α −

1

2
qiαqjαM

ij
α

}
.

(24)

3 Certain alternative approaches to this have been proposed for
MultiNest, such as the use of importance nested sampling in
constant-efficiency mode [40], or employing a trained neural net-
work [41] to accelerate the final stages of sampling.

C. Techniques for maximisation and
marginalisation over φα

By explicitly exposing φα in our expressions for the
likelihood-ratio, we have developed several alternative
approaches designed to approximate maximisation or
marginalisation of the likelihood-ratio over these pulsar-
phase variables.

Firstly, in the context of non-evolving templates, Ellis
et al. [27] noted that one can avoid the formalism of the
Fp statistic (which maximises the likelihood-ratio over
2Np “amplitude” parameters [aiα in Eq. (13)] despite
there being only 7 + Np independent parameters). Im-
proving upon the Fp statistic is desirable, since as we ex-
pand the number of pulsars in our array the disparity be-
tween the dimensionality of the parameter-space assumed
by the Fp statistic and the true physical parameter-space
grows larger. Rather than maximising over these nui-
sance “amplitude” parameters, we can instead analyti-
cally maximise over the physical φα parameters. This
requires solving a quartic equation in x = cosφα which
is guaranteed to have at least one unique solution, al-
though whether that solution satisfies the requirement
−1 ≤ x ≤ 1 must be ascertained on the fly. We can of
course, avoid this completely by numerically maximising
over the pulsar-phase parameters. This is Technique
#1, and constitutes a more appropriate maximisation
than Fp. Nevertheless, we are still left with the prob-
lem of searching over the remaining 7-dimensional pa-
rameter space; this is a much more tractable problem
and can be handled with many off-the-shelf MCMC or
nested-sampling algorithms. In this case, we should not
be surprised if a bias is observed in the posterior distri-
butions of the final 7 parameters, since we are after all
maximising over Np other parameters.

The second option is to avoid maximising entirely,
and instead marginalise the likelihood-ratio over the
pulsar-phase parameters. Note that we can analyti-
cally marginalise over the amplitudes of the signal basis-
functions in Eq. (13) with uniform-priors to get the Bayes
factor for a common-frequency signal in pulsar TOAs.
We do not discuss this further here, but provide the
derivation and a brief analysis in Appendix B. The ap-
proach we follow here is to numerically marginalise over
the pulsar-phase parameters, such that we actually sam-
ple the marginalised likelihood-ratio in our MCMC or
nested-sampling algorithms. In particular, if we can do
this without increasing the likelihood evaluation time sig-
nificantly, then the collapse of the dimensionality makes
this problem tractable with MultiNest. There are
many benefits to this; for example, MultiNest is an
excellent tool for sampling multimodal distributions, it
has inbuilt parallelisation, and in low-dimensionality pro-
vides an efficient means to evaluate the Bayesian evi-
dence. Hence, the numerical marginalisation of the non-
evolving template over pulsar-phase parameters is our
Technique #2.

As a final point of interest for non-evolving templates,
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we note that if there are sufficiently many wave cycles
during the observation time of the pulsars in our array,
then it is possible to maximise over the pulsar-phase pa-
rameters analytically without the need to solve a quar-
tic. More interestingly, it is also possible to analyti-
cally marginalise over the pulsar-phase parameters. The
noise behaviour of real pulsars and the GW frequencies to
which we are most sensitive will likely prohibit us from
making the assumptions required to analytically max-
imise/marginalise in this fashion. However, we provide
the derivation and a brief analysis in Appendix A, where
we find that this analytic marginalisation may be able to
place useful constraints on the values of ζ = M5/3/DL

and the orbital frequency of a SMBH binary, but sky-
localisation and Bayesian evidence recovery is biased.

There are two ways to proceed with an evolving tem-
plate, but both involve numerical marginalisation over
the pulsar-phase parameters. In Technique #3 we com-
pute ωp,α by fixing Lα to its catalogued value, while in
Technique #4 we internally average over the prior dis-
tribution of Lα by drawing the distance used to compute
ωp,α from a Gaussian centred on the catalogued value
with standard-deviation given by the catalogued error-
bars.

Even though the pulsar-phase has an explicit depen-
dence on the pulsar-distance, including the distance in
parameter estimation can produce practical difficulties,
as a small change in the distance may have a relatively
small effect on the pulsar-term frequency, ωp,α, but can
have a huge impact on the phase coherence [28, 30].
Without sub-pc precisions on measured pulsar-distances
the possibility of including the pulsar-term in a coherent
analysis might seem beyond reach. However, Ellis [30]
overcomes this by sampling the distances on two scales;
one is very small to maintain phase coherence, while the
other is larger (on the order of kpc) to solve for the pulsar-
term frequency. Regardless, highly-tuned jump propos-
als for any stochastic sampling approach seem necessary
when trying to incorporate the pulsar-term in a coher-
ent analysis. Our approximation side-steps this problem
by marginalising over the pulsar-phase and drawing Lα
from within its prior to calculate ωp,α. We achieve signif-
icant accelerations with respect to the full search in two
ways: (1) we perform an 8D search with a likelihood that
executes Np×1D numerical integrations, as opposed to
having to stochastically sample from an (8+Np)D space;
(2) this 8D search can be highly parallelised with Multi-
Nest to minimise search times, as opposed to the lengthy
burn-in times and prohibitive autocorrelation lengths as-
sociated with high-dimensional MCMC searches.

III. RESULTS

While a full analysis of these techniques in all conceiv-
able situations is beyond the scope of this study, we rigor-
ously test what we expect to be the most promising new
technique. Technique #4 (which from now we denote

as theMp statistic) is subjected to a program of system-
atic injection and recovery of simulated signals, using the
PALSimulation code which is part of the PAL package
[44] being developed as a unifying suite of tools for pul-
sar timing analysis. The performance of Technique #3
closely follows that of Technique #4, which is unsur-
prising since they involve similar methods. Furthermore,
we expect no systematic bias from Technique #2 other
than that which is introduced by analysing an evolving
signal within a non-evolving model.

The datasets we generated were of the following con-
figurations;

• Type I: 36 pulsars, 5 years of observations, 2 week
cadence, 100 ns RMS white-noise per pulsar, Lpsr =
1±0.1 kpc ∀ pulsars; equivalent to the assumptions
of the first Open dataset in the IPTA MDC.

• Type II: 9 pulsars, variable observation time-span,
average 2 week cadence, realistic white-noise, Lpsr

equal to catalogued values.

• Type III: 9 pulsars, variable observation
time-span, average 2 week cadence, realis-
tic white-noise, Lpsr drawn from Gaussian
distribution (mean=catalogued-value, standard-
deviation=catalogued-error).

The observation time-spans, white-noise RMS values,
and distances for the 9 pulsars in Type II and Type III
datasets are shown in Table I.

A. Model selection

We evaluate the accuracy of the Bayes factors re-
turned by these pulsar-phase marginalisation techniques
by injecting signals into various noise realisations at
various SNRs. The SNR in these cases is defined as
SNR2 =

∑
α (s (~µinj) |s (~µinj))α. We compare the re-

covered Bayes factors with those obtained by employing
parallel-tempering and thermodynamic integration with
the full signal template (and searching for the pulsar-
distances). Parallel tempering is a method of launching
many MCMC chains of varying “temperature” designed
to aggressively search parameter space, and avoid trap-
ping of chains in local likelihood maxima. Each chain has
a different target distribution, p(~µ|D,β) ∝ p(~µ)p(D|~µ)β ,
where β is the inverse temperature and varies between 0
and 1. Higher temperatures effectively flatten out the
likelihood surface, and explore regions far from maxi-
mum. A multi-temperature Hastings ratio is employed to
ensure mixing of the chains and rapid localisation of the
global maximum. After exploration the different chains
can be processed via thermodynamic integration to give
an estimate of the Bayesian evidence [e.g., 45]. The evi-
dence for a chain with inverse temperature β is simply,

Zβ =

∫
d~µ p(~µ)p(D|~µ)β , (25)
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TABLE I: Pulsar distances taken from Verbiest et al. [42] if available, or otherwise from the ATNF catalogue [43].

Pulsar White-noise RMS [ns] Time-span [yr] Pulsar distances [kpc]

J0030+0451 792 12.7 0.28± 0.1

J0437-4715 69 14.8 0.156± 0.001

J1640+2224 410 14.9 1.19± 0.238

J1713+0747 136 18.3 1.05± 0.06

J1744-1134 366 16.9 0.42± 0.02

J1857+0943 402 14.9 0.9± 0.2

J1909-3744 100 9.0 1.26± 0.03

J1939+2134 141 16.3 5.0± 2.0

J2317+1439 412 14.9 1.89± 0.38
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FIG. 1: A comparison of the computed posterior
odds-ratios (lnB) evaluated using thermodynamic

integration of the full signal model (solid lines), and the
technique of numerically marginalising over the

pulsar-phase parameters while sampling from the
pulsar-distance prior (Mp statistic; dashed lines).
Different SNR signals are injected into a variety of
realisations of Type I and Type III datasets. The

agreement found between the two methods is excellent.
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FIG. 2: For a given realisation of noise, we repeat the
analysis of Type I/II/III datasets with a non-evolving

template. We see that the mismatch between the
assumption of a non-evolving signal and the reality of

an evolving-binary injection leads to Bayes factors
which can be significantly below the optimal

evolving-model values.

such that,

lnZ =

∫ 1

0

dβ
∂ lnZβ
∂β

=

∫ 1

0

dβ

∫
d~µ

p(~µ)p(D|~µ)β

Zβ
ln p(D|~µ)

=

∫ 1

0

dβ 〈ln p(D|~µ)〉β , (26)

where 〈·〉β denotes an expectation value with respect to
the target posterior of inverse temperature β. For details
on the parallel tempering and thermodynamic integra-
tion techniques employed here, see Ellis [30], Arzouma-
nian et al. [46] and references therein.

The signal we inject matches that explored in Ellis
[30], which is at the sky-location of the Fornax cluster.
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Recent work has shown that there may be potential
single GW source “hot spots” in the Virgo, Fornax and
Coma clusters [47]. Regardless, we are only interested
in sensible parameters to form an injected signal.
These parameters are {M, DL, f0, φ, cos θ, cos ι, ψ, φ0} ={

7× 108M�,−, 10−8Hz, 0.95,−0.56, 0, 1.26, 2.65
}

,
where the luminosity distance DL is scaled to suit the
desired SNR.

Another important aspect is our choice of prior onM,
DL and f0. We employ log-uniform priors on these vari-
ables, but also apply a cut on the characteristic-strain in-

duced by the binary, where we define h0 = 4
√

2/5ω
2/3
0 ζ

and require h0 ≤ h0,c

(
fgw/10−8Hz

)2/3
, where h0,c =

10−13. We use Monte Carlo integration to compute the
prior re-normalisation, which only leads to a change in log
odds-ratio of . 0.1. However, this cut had practical value
in limiting the high-strain parameter space which was in-
hibiting our thermodynamic integration from converging
to the true evidence value with a reasonable number of
temperature chains. Also, this is a cheap way to impose
a correlated prior on chirp mass, luminosity distance and
GW frequency [46].

The comparison between an evaluation of the posterior
odds ratio performed by the full thermodynamic integra-
tion (solid lines) and the Mp statistic (dashed lines) for
Type I and Type III datasets of various injected SNR is
shown in Fig. 1, where we see excellent agreement for a
variety of different noise realisations. For realistic Type
III datasets, we in fact see that the Mp statistic gives a
mildly conservative estimate of the full Bayes factor. We
find that the speed of the numerical-marginalisation tech-
niques depend on the SNR of the injection, where for low
to moderate SNR (∼ 0− 2) the evidence and parameter-
estimation stages of MultiNest completed within only
a few minutes of wall-time on 48 computational cores.
The highest SNR injections (SNR = 10) required longer,
but still finished within ∼ 45 minutes of wall-time on 48
cores. The reason for this trend is that the likelihood at
low SNR is broad and featureless in the pulsar-term phase
parameters, allowing the numerical integration routines
to converge rapidly to a solution. In comparison, ther-
modynamic integration took more than a day for a single
dataset analysis with similar computational resources.

Analysing these datasets using the numerical phase
marginalisation with a non-evolving template (Tech-
nique #2), we find that the mismatch between the model
and the evolving-signal injections leads to Bayes factors
which can be significantly below the optimal evolving-
model values. This is illustrated for a single noise re-
alisation in Figure 2. We will revisit this in the next
section.

B. Parameter estimation

To ascertain whether numerical marginalisation tech-
niques introduce any systematic bias in parameter recov-
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FIG. 3: The fraction of injections which are “closer” in
the chi-squared sense (see text) to the set of points

lying inside credible-interval, a, is plotted against the
credible-interval. The line of zero-bias is shown as a

thick, black-line, while the results of an analysis of 100
realisations of evolving/non-evolving Type II datasets
using numerical-marginalisation (the Mp statistic) are
shown as solid-red and dashed-blue. The dashed-green

line shows the result for when we offset our catalogue of
distances from their true values by an amount

consistent with their error-bars. While some bias is
present, this plot does not indicate how that manifests

in the physical parameter-space.

ery, we inject SNR = 8 signals into various white-noise
realisations. The injected binary orbital frequency is cho-
sen to be 10−8 Hz such that the GW frequency lies close
to the peak sensitivity of an array of pulsars observed
over a period of & 5 years (see Moore et al. [48] for a full
discussion of Bayesian and frequentist continuous-wave
sensitivity curves, and Arzoumanian et al. [46] for the
latest NANOGrav continuous-wave sensitivity curves.).
We choose injected chirp masses of 7 × 108M� and
1.8× 108M� in order to model a strongly evolving (over
the Earth-pulsar light-travel time), and weakly evolving
binary respectively, where the lower mass injection will
have an ω̇ which is ∼ 10% of the higher mass.

These evolving and weakly-evolving binaries are in-
jected into 100 different noise-realisations of Type II
datasets. This type of dataset is used because we want
the characteristics of the PTA to remain fixed, such that
the injected binary’s luminosity distance, DL, (which
is scaled to accommodate the desired SNR) is constant
over each realisation. The remaining binary parameters
are injected with the following values into each dataset;
{φ = 1, cos θ = 0.48, cos ι = 0.88, ψ = 0.5, φ0 = 2.89}.

We present results for the case of the Mp statistic,
which should be applicable regardless of whether the bi-
nary is evolving or not. We again note that no bias would
be expected within Technique #2, which numerically
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marginalises over the pulsar-phase variables in the non-
evolving formalism. The only bias expected here derives
from the inherent limitations of applying an inappropri-
ate non-evolving model to a possibly evolving signal.

Our method of testing for systematic bias in the use of
theMp statistic is an extension of a method used in Ellis
et al. [49] to validate the accuracy of a first-order likeli-
hood approximation in a stochastic background search.
As discussed there, the benchmark of internal consistency
is when, in x% of realisations, the set of injected parame-
ters lies within the inner x% of the marginalised posterior
distribution. The inner high-probability region is defined
as,

∫

W

p(~θ)dNθ = a, (27)

W = {θ1, θ2, . . . , θN ∈ R : p(~θ) > La},

where La > 0 is some value unique to each a correspond-
ing to a curve of equal probability in the N dimensional
parameter space.

To find all points satisfying p(~θ) > La we rank the
recovered posterior samples in order of decreasing poste-
rior weight, then integrate over all samples until we reach
the desired credible interval. For each realisation, we can
then define two sets of points; the set of points inside the
high-probability region (HPR) Sa, and the complemen-
tary set Sā.

We now extend the dimensionality of the definitions of
the χ2 variables in Ellis et al. [49] to give a measure of
the distance of the posterior samples in each set from the
true injected parameters,

χa(~θi)
2 =

(
log10(Mi)− log10(Mtrue)

log10(Mtrue)

)2

+

(
log10(DL,i)− log10(DL,true)

log10(DL,true)

)2

+

(
φi − φtrue

φtrue

)2

+

(
cos θi − cos θtrue

cos θtrue

)2

+

(
cos ιi − cos ιtrue

cos ιtrue

)2

+

(
ψi − ψtrue

ψtrue

)2

+

(
φ0,i − φ0,true

φ0,true

)2

, (28)

where ~θi are elements of Sa. We also define a correspond-

ing expression for χā(~θj)
2 in terms of the elements, ~θj , of

the complementary set, Sā.
Finally, we define the empirical distribution function

(EDF) as,

Fk(a) =
1

k

k∑

n=1

Θ
(
minχ2

ā −minχ2
a

)
, (29)

where k is the number of noise realisations, and Θ(x) is
the Heaviside step-function. This summation gives the
fraction of all noise-realisation in which the injected val-
ues are “closer” (in the χ2 sense) to one of the elements

of the HPR than to any element of the complementary
set.

The results of such an analysis are shown in Fig. 3 for
the evolving and weakly-evolving binary injections. The
line of internal consistency is shown as a thick, black diag-
onal line. We see that this technique does indeed present
bias, with a worst-case sag of ∼ 0.25. However, the EDF
does not give an insight into how this bias manifests itself
in the parameter space.

In Fig. 4 we show the distribution of maximum-a-
posteriori values over all 100 noise-realisations, with the
injected signal parameters also indicated. It is clear that
while the Mp statistic may fail the formal EDF test, in
practical terms it quite comfortably recovers the true pa-
rameters of the injected signal. This holds even when the
catalogue of pulsar distances is offset from the true values
by an amount consistent with their error-bars. Addition-
ally, we show how the injected parameters and maximum-
a-posteriori values are distributed with respect to the
68%, 95% and 99% contours of the realisation-averaged
posterior. On average the distribution of the maximum-
a-posterior values follows the average posterior, except
perhaps in the case of cos ι, which may be the source of
the bias seen in the formal EDF test. Regardless, all in-
jected values lie within the 68% credible interval. The
Mp statistic also recovers the true injected parameter
values when the GW source is weakly evolving. Figure
5 shows a similar analysis to Fig. 4 for a weakly evolv-
ing injection, where, despite some offset of the injected
values of (M, DL) from the distribution of maximum-a-
posteriori values, all injected values lie within the 68%
credible interval of the overplotted realisation-averaged
posterior probability distributions.

A further test we carry out is to assess the performance
of the Mp-computed Bayesian posterior odds-ratio as a
detection classifier. We do so by producing a receiver
operator characteristic (ROC) plot, illustrating the frac-
tion of true positive detections versus false positive de-
tections as we vary the detection threshold. We inject
various SNR signals into 100 different noise-realisations,
recovering the evidence in each case. The injected binary
parameters are the same as the evolving case above. We
see from Fig. 6 that the posterior odds-ratio becomes a
virtually perfect detection classifier at an SNR of 6. Al-
though we cannot draw truly general conclusions from
this, the aim of this exercise is to show that these nu-
merical marginalisation techniques are accurate enough
to allow detailed statistical tests within a Bayesian con-
text with much lower computational expenditure than
existing techniques. The question of what is required for
an unambiguous claim of GW detection using Bayesian
statistics has been hitherto out of reach due to high com-
putational expenditure, but can be rigorously assessed by
employing these techniques.

Finally, we assess the importance of using an evolving
versus non-evolving template when establishing detection
criteria. For evolving and weakly-evolving sources, we in-
ject SNR=8 signals into 100 different noise-realisations.
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FIG. 4: We show the distribution of maximum-a-posteriori values (filled grey circles) from an analysis of 100
realisations of an evolving signal injected into a Type II dataset, and analysed with the Mp statistic. As a further
step towards real dataset analysis, we offset our catalogue of pulsar distances from their true values by an amount
consistent with error bars. As can be seen, in the parameters of interest (M, DL, fgw, φ, cos θ, cos ι) this technique

recovers the injected values (blue stars and blue dashed lines) quite comfortably. Additionally, we overplot the 68%,
95% and 99% contours of the posterior probability distributions averaged over all noise realisations. On average the
distribution of the maximum-a-posterior values follows the average posterior, except perhaps in the case of cos ι. All

injected values lie within the 68% credible interval.

We analyse each dataset using both the numerical phase
marginalisation in the evolving-model (Mp statistic) and
the non-evolving model, recovering the evidences in each
case. The results are shown in Fig. 7, where we see
that the evolving template is more general, capturing
the behaviour of the gravitational-waveform even when
the signal is non-evolving, and giving a Bayes factor
which is comparable to the value returned by the non-
evolving analysis. However, as seen in the previous sec-
tion, the non-evolving template recovers a Bayes factor
which can be significantly lower than the evolving-model
template whenever the signal is truly evolving. This
shows that the evidence values returned by these numeri-
cal phase marginalisation techniques conform to expected
behaviour, and allow us to infer whether the GW signal is
evolving based on the evolving versus non-evolving pos-
terior odds ratio.

IV. CONCLUSION

Near-future GW searches which exploit the high-
precision timing of millisecond pulsars may open a new
observational window onto the early-inspiral phase of
SMBH binaries. These systems are expected to be ubiq-
uitous in the current picture of hierarchical structure for-
mation, where massive galaxies grow via accretion from
cosmic web filaments and galactic mergers [50, 51]. Su-
permassive BHs are thought to reside within the nuclei of
most galaxies [e.g., 52], evolving symbiotically with the
host [e.g., 53–55], such that galactic mergers, followed
by the inspiral of BHs via dynamical friction into the
post-merger remnant, leave a large population of SMBH
binary systems.

While the dominant nanohertz GW signal accessible to
PTAs will likely be a stochastic background formed from
the incoherent superposition of signals from the inspiral
of these systems, massive nearby binaries may be visible
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FIG. 5: We show the distribution of maximum-a-posteriori values (filled grey circles) from an analysis of 100
realisations of a weakly evolving signal injected into a Type II dataset, and analysed with the Mp statistic. The

injected values of (M, DL) appear to be offset from the distribution of maximum-a-posteriori values, but are fully
consistent with the overplotted average posterior probability distributions (see Fig. 4 for additional details). We

note that all injected values lie within the 68% credible interval.

as single resolvable sources. Detecting these systems, and
determining their properties, will offer a complementary
probe to eLISA/NGO of the massive BH-population, in
addition to a cross-check of system parameters from pos-
sible electromagnetic counterparts [see 56, and references
therein]. These counterparts may in fact aid detection, as
we no longer need to perform completely blind searches
and can collapse the parameter space of our search algo-
rithms.

In this paper we have presented several new approaches
to single-source searches in PTAs. The need to include
the pulsar-term in analyses for accurate sky-localisation
leads to practical difficulties, as distances to pulsars
are poorly constrained, requiring us to introduce an ex-
tra search-parameter per pulsar. In evolving-template
searches we must also take into account the inspiral of the
binary over Earth-pulsar light travel-times, which (when
we coherently include the pulsar-term) effectively extends
the baseline of our observations by thousands of years, al-
lowing our searches to reconstruct the orbital-evolution
of the system and disentangle its chirp mass from the
luminosity distance.

By numerically marginalising “on-the-fly” over the
phase of the GW as it passes each pulsar, and sampling
the distance to each pulsar from prior electromagnetic
constraints, we can collapse the dimensionality of our
searches. Our likelihood is fast enough, and our search
space small enough, to bring the powerful Bayesian in-
ference package MultiNest to bear on the problem. We
achieve significant accelerations with respect to the full
search in two ways: (1) we perform an 8D search with a
likelihood that executes Np×1D numerical integrations,
as opposed to having to stochastically sample from an
(8 + Np)D space; (2) this 8D search can be highly par-
allelised with MultiNest to minimise search times, as
opposed to the lengthy burn-in times and prohibitive au-
tocorrelation lengths associated with high-dimensional
MCMC searches. For low to moderate SNRs we can
perform parameter-estimation and recover the Bayesian
evidence within a few minutes, whereas a full search util-
ising thermodynamic integration can take as long as a
day with similar computational resources. We find excel-
lent agreement of our Bayes factors with those returned
by full searches, and, although the parameter estimation
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FIG. 6: We inject an evolving signal into 100
realisations of Type II datasets at various SNRs

(including SNR=0), recovering the posterior-odds ratio
via the Mp statistic in each case. Setting the threshold

of detection at varying values of the posterior odds
ratio, we compute the fraction of realisations which are
classified as false-positive and true-positive detections.
We see that for this binary, and using this technique,

the posterior odds ratio is an almost perfect classifier at
SNR=6. With these numerical marginalisation

techniques, the run-time is fast enough to permit
detailed analysis of detection requirements within a

Bayesian context.

shows some small level of systematic bias in formal EDF
tests, in practical terms we quite comfortably recover in-
jected parameters. Analytic marginalisation of the like-
lihood over the pulsar-term phases may be able to place
useful constraints on the values of ζ = M5/3/DL and
the orbital frequency of a SMBH binary, although sky-
localisation and Bayesian evidence recovery is biased.

We will apply these techniques to upcoming continu-
ous GW searches with EPTA and IPTA datasets. Our
techniques are fast enough to allow systematic injection
and recovery of many signals, permitting an exploration
of the criteria required to make an unambiguous Bayesian
detection claim.

Appendix A: Analytic marginalisation and
maximisation over φα in non-evolving template

In the following we refer to the non-evolving tem-
plate of Sec. II A. Assuming we have sufficiently many
wave cycles during the observation time-span, we can use
the following assumptions for the signal basis-function
overlaps in Eq. (16): (A1|A2) = (A2|A1) ' 0, and
(A1|A1) ' (A2|A2) ' N (ω0). In practice, the ratio of
the cross-terms of the basis-function overlaps to the di-
agonal terms may not be small enough to permit these

FIG. 7: Evolving and weakly-evolving signals are
injected into 100 different noise-realisations with an
SNR of 8. We analyse all datasets using both the

non-evolving and evolving templates (with numerical
phase marginalisation), recovering the evidence in each

case. We find that evidence recovered using the
numerical phase marginalisation conforms to expected

behaviour. On average, when the injected signal is
weakly-evolving there is no difference in the evidence
for an evolving or non-evolving template. However,

when the signal is evolving the distribution of evidence
will on average favour the evolving template.

approximations to be used. For example, Fig. 8 shows
the ratio (A1|A2)/(A1|A1) for one of the pulsars in the
IPTA MDC Open1 dataset, and for a real NANOGrav
J0613-0200 dataset [57]. The ratio diminishes at higher
frequencies, and for the mock dataset gets to . 10−2 at
the highest detectable frequencies. However, for a real
pulsar dataset the ratio stays around 10−1 even at the
highest frequencies. Furthermore, the GW frequencies
to which we are most sensitive are ∼ a few ×10−8, di-
minishing as we move to the higher frequencies required
for these approximations to hold.

Nevertheless, these analytic expressions may have
some value as rapid first-pass tools, and we provide the
derivations below.

1. Marginalising

Given the overlap approximations and the non-
evolving template defined in Eq. (13-16) we have,

(sα|sα) ' [a1αa1α + a2αa2α]N (ω0),

' 2N (ω0)
(
q2
1α + q2

2α

)
(1− cosφα) , (A1)
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FIG. 6: We inject an evolving signal into 100 realisations of Type II datasets at various SNRs (including SNR=0),
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true-positive detections. We see that for this binary, and using this technique, the posterior odds ratio is an almost
perfect classifier at SNR=6. With these numerical marginalisation techniques, the run-time is fast enough to permit

detailed analysis of detection requirements within a Bayesian context.
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If we have a bright source (with a large amplitude), such that the argument of the modified Bessel function is large,
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such that,

ln Λ =

Np∑

α=1

[
(rα|sα)− 1

2
(sα|sα)

]

'
Np∑

α=1

{[
q1α(rα|A1

α) + q2α(rα|A2
α)−

(
q2
1α + q2

2α

)
N (ω0)

]

−
[
q1α(rα|A1

α) + q2α(rα|A2
α)−

(
q2
1α + q2

2α

)
N (ω0)

]
cosφα

−
[
q2α(rα|A1

α)− q1α(rα|A2
α)
]

sinφα
}

'
Np∑

α=1

[−Xα +Xα cosφα + Yα sinφα] . (A2)

Hence, marginalising the likelihood-ratio over each
pulsar-phase parameter, assuming flat-priors, gives,

∫
Λ dNpφ ∝

(
1

2π

)Np
Np∏

α=1

∫ 2π

0

exp[(rα|sα)− 1

2
(sα|sα)]dφα

∝
(

1

2π

)Np

exp


−

Np∑

α=1

Xα




×
Np∏

α=1

∫ 2π

0

exp(Xα cosφα + Yα sinφα) dφα

∝
Np∏

α=1

exp(−Xα)I0

(√
X2
α + Y 2

α

)
, (A3)

where I0 is a modified Bessel function of the first kind.
Note that this technique of analytic marginalisation of
nuisance phase parameters has previously been used in
different contexts [58, 59], but has never been applied to
PTA data-analysis. Finally, we have the PML (Phase

Marginalised Likelihood) statistic,

ln Λ̃ ∝
Np∑

α=1

{
−Xα + ln

[
I0

(√
X2
α + Y 2

α

)]}
. (A4)

If we have a high SNR signal, such that the argument of
the modified Bessel function is large, then directly com-
puting I0(x) can be very difficult. However, we can use a
large argument expansion of the modified Bessel function
to aid this calculation,

ln [I0(x)] ∼ x− 1

2
ln (2πx) + ln

(
1 +

1

8x
+

9

128x2

+
225

3072x3
+

11025

98304x4
. . .

)
. (A5)

We applied this statistic to the SNR=8 evolving and
weakly-evolving datasets discussed in Sec. III B. The
analysis proceeded very quickly with minimal compu-
tational resources, since we are only searching over 8
parameters without any expensive stages in the likeli-
hood evaluation. In Fig. 9 we show the distribution of
maximum-a-posteriori values from the analysis of 100
noise realisations. The injected values of M, DL, and
fgw are consistent with the distribution of maximum-a-
posteriori values, however other parameters showed sig-
nificant bias. The recovered Bayes factors were also
highly biased. Hence the PML statistic may be useful
in placing constraints on the binary’s ζ =M5/3/DL and
orbital frequency, although sky-localisation and Bayesian
evidence recovery is unreliable.
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FIG. 9: We show the distribution of maximum-a-posteriori values (filled grey circles) from analyses of 100
realisations of (a) evolving and (b) weakly-evolving signals injected into Type II datasets (see Sec. III B for details).
These datasets were analysed with the Phase Marginalised Likelihood (PML) statistic, which involves an analytic
marginalisation over pulsar-term phase parameters. In both cases the injected values (blue stars and blue dashed

lines) of M, DL, and fgw are consistent with the distribution of maximum-a-posteriori values, however other
parameters showed significant bias.

2. Maximising

Going back to the original ln Λ in Eq. (A2), it is possi-
ble to maximise the likelihood-ratio over the pulsar-phase
parameters. As indicated in Ellis et al. [27], the solution
to the maximum-likelihood value of φα requires evaluat-

ing a quartic. However, if we use the overlap approxima-
tions from the previous section then the solution is more
simple. Maximising gives

∂ ln Λ

∂φβ
' −Xβ sinφβ + Yβ cosφβ = 0, (A6)
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where

tanφβ =
Yβ
Xβ

, (A7)

so that we can define the log-likelihood ratio maximised
over all φα, which we call the Tp-statistic,

Tp =

Np∑

α=1

[
−Xα +

√
X2
α + Y 2

α

]
. (A8)

We may be able to go further, and to maximise over
other parameters, but we do not consider this here. Re-
gardless, we have a rather compact form for the log-
likelihood ratio maximised over all the pulsar-phase pa-
rameters. The remaining 7-D single-source parameter
space can easily be explored using MCMC.

Note that if we use the large argument expansion of
the modified Bessel function to approximate the PML
we get,

ln Λ̃ ∝
Np∑

α=1

{
−Xα +

√
X2
α + Y 2

α −
1

2
ln
(

2π
√
X2
α + Y 2

α

)}
.

(A9)

For sufficiently large arguments,
√
X2
α + Y 2

α increases

faster than ln
(

2π
√
X2
α + Y 2

α

)
. Hence, in the infinite

SNR limit the PML statistic is proportional to the
maximum-likelihood estimator Tp statistic,

ln Λ̃ ∝
Np∑

α=1

{
−Xα +

√
X2
α + Y 2

α )
}
∝ Tp. (A10)

Appendix B: Bp statistic (analytic marginalisation
over amplitude parameters in non-evolving

template)

Rather than analytically maximising over the ampli-
tude parameters, aiα [see Eq. (14)], to produce the Fp
statistic, if we assume uniform priors on these parame-
ters then it is trivial to analytically marginalise and cal-
culate the Bayes factor. We re-write the likelihood as
the following and complete the square in the amplitude
parameters, such that

ln Λ =

Np∑

α=1

(rα|sα)− 1

2
(sα|sα)

=

Np∑

α=1

aiα(rα|Aiα)− 1

2
aiαajα(Aiα|Ajα)

=

Np∑

α=1

aiαN
i
α −

1

2
aiαajαM

ij
α ,

=− 1

2

Np∑

α=1

[(
aα −M−1

α Nα
)T
Mα

(
aα −M−1

α Nα
)

−NT
α

(
M−1
α

)T
Nα

]
. (B1)

Now we integrate over the amplitude parameters with
uniform priors, and permit the maximum strain to be
large enough such that the likelihood is unaffected by
the prior boundary. We can therefore set the limits of
integration to be between [−∞,+∞], such that

Bp = C exp




Np∑

α=1

NT
α

(
M−1
α

)T
Nα

2




Np∏

α=1

[
det
(
2πM−1

α

)]1/2

= C (2π)
Np exp (Fp)

Np∏

α=1

(det Mα)
−1/2

, (B2)

where C denotes the prior volume.

In Fig. 10 we show the results of an application of
the Bp statistic to a Type I dataset with an injected GW
frequency equal to 2×10−8 Hz. The Fp statistic performs
very well and unambiguously locates the correct signal
frequency. While the Bp statistic also shows a small peak
at this frequency, the extra determinant factor in Eq.
(B2) causes the trend in frequency to show significant
features of the noise curve. Hence, in this isolated case,
Bp significantly underperforms Fp.

The form of the Bp statistic has been previously ar-
rived at in the context of LIGO data analysis [60], where
uniform priors for aiα was shown to be very unphysi-
cal, and more physically-motivated priors were suggested.
This was further explored in Whelan et al. [61], where a
new set of coordinates was found which are linear com-
binations of aiα, but which have a closer relationship to
the physical parameter space. This improved the accu-
racy of the approximate analytic Bayes factor calculation
with respect to the full numerical result. We do not ex-
plore this coordinate transformation here, but will con-
sider this promising route in future work.

Acknowledgments

ST acknowledges the support of the STFC and the
RAS. This research was in part supported by an ap-
pointment to the NASA Postdoctoral Program at the Jet
Propulsion Laboratory, administered by Oak Ridge As-
sociated Universities through a contract with NASA. JE
is an Einstein fellow and acknowledges support by NASA
through Einstein Fellowship grant PF4-150120. JE was
partially funded through an NSF CAREER award num-
ber 0955929 and through the Wisconsin Space Grant
Consortium. JG is supported by the Royal Society. Part
of this work was performed using the Darwin Supercom-
puter of the University of Cambridge High Performance
Computing Service (http://www.hpc.cam.ac.uk/), pro-
vided by Dell Inc. using Strategic Research Infrastructure
Funding from the Higher Education Funding Council for
England. Part of the computational work was performed
on the Nemo cluster at UWM supported by NSF grant
number 0923409.

http://www.hpc.cam.ac.uk/


16

10-8 10-7

log10(fgw/Hz)

20

30

40

50

60

70

80

F
p

Data analysed with Fp
Data analysed with Bp

1700

1600

1500

1400

1300

1200

1100

ln
(B

p
/C

)
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