69 research outputs found
The impact of inpatient suicide on psychiatric nurses and their need for support
<p>Abstract</p> <p>Background</p> <p>The nurses working in psychiatric hospitals and wards are prone to encounter completed suicides. The research was conducted to examine post-suicide stress in nurses and the availability of suicide-related mental health care services and education.</p> <p>Methods</p> <p>Experiences with inpatient suicide were investigated using an anonymous, self-reported questionnaire, which was, along with the Impact of Event Scale-Revised, administered to 531 psychiatric nurses.</p> <p>Results</p> <p>The rate of nurses who had encountered patient suicide was 55.0%. The mean Impact of Event Scale-Revised (IES-R) score was 11.4. The proportion of respondents at a high risk (≥ 25 on the 88-point IES-R score) for post-traumatic stress disorder (PTSD) was 13.7%. However, only 15.8% of respondents indicated that they had access to post-suicide mental health care programmes. The survey also revealed a low rate of nurses who reported attending in-hospital seminars on suicide prevention or mental health care for nurses (26.4% and 12.8%, respectively).</p> <p>Conclusions</p> <p>These results indicated that nurses exposed to inpatient suicide suffer significant mental distress. However, the low availability of systematic post-suicide mental health care programmes for such nurses and the lack of suicide-related education initiatives and mental health care for nurses are problematic. The situation is likely related to the fact that there are no formal systems in place for identifying and evaluating the psychological effects of patient suicide in nurses and to the pressures stemming from the public perception of nurses as suppliers rather than recipients of health care.</p
Surface-Enhanced Nitrate Photolysis on Ice
Heterogeneous nitrates photolysis is the trigger for many chemical processes occurring in the polar boundary layer and is widely believed to occur in a quasi-liquid layer (QLL) at the surface of ice. The dipole forbidden character of the electronic transition relevant to boundary layer atmospheric chemistry and the small photolysis/photoproducts quantum yields in ice (and in water) may confer a significant enhancement and interfacial specificity to this important photochemical reaction at the surface of ice. Using amorphous solid water films at cryogenic temperatures as models for the disordered interstitial air/ice interface within the snowpack suppresses the diffusive uptake kinetics thereby prolonging the residence time of nitrate anions at the surface of ice. This approach allows their slow heterogeneous photolysis kinetics to be studied providing the first direct evidence that nitrates adsorbed onto the first molecular layer at the surface of ice are photolyzed more effectively than those dissolved within the bulk. Vibrational spectroscopy allows the ~3-fold enhancement in photolysis rates to be correlated with the nitrates’ distorted intramolecular geometry thereby hinting at the role played by the greater chemical heterogeneity in their solvation environment at the surface of ice than in the bulk. A simple 1D kinetic model suggests 1-that a 3(6)-fold enhancement in photolysis rate for nitrates adsorbed onto the ice surface could increase the photochemical NO[subscript 2] emissions from a 5(8) nm thick photochemically active interfacial layer by 30%(60)%, and 2-that 25%(40%) of the NO[subscript 2] photochemical emissions to the snowpack interstitial air are released from the top-most molecularly thin surface layer on ice. These findings may provide a new paradigm for heterogeneous (photo)chemistry at temperatures below those required for a QLL to form at the ice surface
Threshold Effects on Heavy Quark Production in Interactions
The exchange of gluons between heavy quarks produced in interactions
results in an enhancement of their production near threshold. We study QCD
threshold effects in collisions. The results are relevant to
heavy quark production by beamstrahlung and laser back-scattering in future
linear collider experiments. Detailed predictions for top, bottom and charm
production are presented.Comment: 26 pages, 12 figures available in ps upon request, revtex, MAD/PH/701
(revised version
In situ observation of elementary growth processes of protein crystals by advanced optical microscopy
To start systematically investigating the quality improvement of protein crystals, the elementary growth processes of protein crystals must be first clarified comprehensively. Atomic force microscopy (AFM) has made a tremendous contribution toward elucidating the elementary growth processes of protein crystals and has confirmed that protein crystals grow layer by layer utilizing kinks on steps, as in the case of inorganic and low-molecular-weight compound crystals. However, the scanning of the AFM cantilever greatly disturbs the concentration distribution and solution flow in the vicinity of growing protein crystals. AFM also cannot visualize the dynamic behavior of mobile solute and impurity molecules on protein crystal surfaces. To compensate for these disadvantages of AFM, in situ observation by two types of advanced optical microscopy has been recently performed. To observe the elementary steps of protein crystals noninvasively, laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM) was developed. To visualize individual mobile protein molecules, total internal reflection fluorescent (TIRF) microscopy, which is widely used in the field of biological physics, was applied to the visualization of protein crystal surfaces. In this review, recent progress in the noninvasive in situ observation of elementary steps and individual mobile protein molecules on protein crystal surfaces is outlined
- …