15 research outputs found

    Protective Coating Program Final Report

    Get PDF
    This program consists of two primary segments: 1) installing an environmental monitoring station at the Toyota marshalling yard at Georgetown, Kentucky, and 2) conducting laboratory and field tests of paint and wax-coated painted specimens to assess the protection against acid rain damage afforded by a protective transient coating

    The particle dry deposition component of total deposition from air quality models: right, wrong or uncertain?

    No full text
    Dry deposition is an important loss process for atmospheric particles and can be a significant part of total deposition estimates calculated for critical loads analyses. However, algorithms used in large-scale air quality and atmospheric chemistry models to predict particle deposition velocity as a function of particle size are highly uncertain. Many of these algorithms, although derived from a common heritage, predict vastly different particle deposition velocities for a given particle diameter even under identical environmental conditions for major land use classes. Even more problematic, for vegetated landscapes (forests, in particular) the algorithms do not agree very well with available measurements. In this work, we perform a sensitivity study to estimate how significant the uncertainties in particle deposition algorithms may be in an air quality model’s predictions of ground-level fine particle concentrations, particle deposition and overall total deposition of nitrogen and sulfur. Our results suggest that fine particle concentration predictions at the surface may vary by 5–15% depending on the choice of particle deposition velocity algorithm, while particle dry deposition is affected to a much greater extent with differences among algorithms >200%. Moreover, if accumulation mode particle dry deposition measurements over forests are correct, then dry particle deposition and total elemental deposition to these landscapes may be much larger than is typically simulated by current air quality and atmospheric chemistry models, calling into question commonly available estimates of total deposition and their use in critical loads analyses. Since accurate predictions of atmospheric particle concentrations and deposition are critically important for future air quality, weather and climate models and management of pollutant deposition to sensitive ecosystems, an investment in new dry deposition measurements in conjunction with integrated modelling efforts seems not only justified but vitally necessary to advance and improve the treatment of particle dry deposition processes in atmospheric models

    A field evaluation of the SoilVUE10 soil moisture sensor

    No full text
    Abstract The U.S. Climate Reference Network (USCRN) has been engaged in ground‐based soil water and soil temperature observations since 2009. As a nationwide climate network, the network stations are distributed across vast complex terrains. Due to the expansive distribution of the network and the related variability in soil properties, obtaining site‐specific calibrations for sensors is a significant and costly endeavor. Presented here are three commercial‐grade electromagnetic sensors, with built‐in thermistors to measure both soil water and soil temperature, including the SoilVUE10 Time Domain Reflectometry (TDR) probe (hereafter called SP) (Campbell Scientific, Inc.), 50 MHz coaxial impedance dielectric sensor (model HydraProbe, Stevens Water Monitoring Systems, Inc.) (hereafter called HP), and the TDR‐315L Probe (model TDR‐315L, Acclima, Inc.) (hereafter called AP), which were evaluated in a relatively nonconductive loam soil in Oak Ridge, TN, from 2021 to 2022. The HP manufacturer‐supplied calibration equation for loam soils was used in this study. While volumetric water content data from HP and AP were 82–99% of respective gravimetric observations at 10 cm, data from SP were only 65–81% of respective gravimetric observations in the top 20‐cm soil horizon, where soil water showed relatively large spatial variability. The poor performance of the SP is likely due to poor contact between SP sensor electrodes and soil and the presence of soil voids caused by the installation method used, which itself may have caused soil disturbance

    Space telescope and optical reverberation mapping project. IV. Anomalous behavior of the broad ultraviolet emission lines in NGC 5548

    Get PDF
    During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert 1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far UV continuum and broad emission line variations decorrelated for 60–70 days, starting 75 days after the first HST/ COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, characterized by significant deficits in flux and equivalent width of the strong broad UV emission lines, is the first of its kind to be unambiguously identified in an active galactic nucleus reverberation mapping campaign. The largest corresponding emission line flux deficits occurred for the high ionization, collisionally excited lines C IV and Si IV(+O IV]), and also He II(+O III]), while the anomaly in Lyα was substantially smaller. This pattern of behavior indicates a depletion in the flux of photons with Eph > 54 eV relative to those near 13.6 eV. We suggest two plausible mechanisms for the observed behavior: (i) temporary obscuration of the ionizing continuum incident upon broad line region (BLR) clouds by a moving veil of material lying between the inner accretion disk and inner (BLR), perhaps resulting from an episodic ejection of material from the disk, or (ii) a temporary change in the intrinsic ionizing continuum spectral energy distribution resulting in a deficit of ionizing photons with energies >54 eV, possibly due to a transient restructuring of the Comptonizing atmosphere above the disk. Current evidence appears to favor the latter explanation
    corecore