15 research outputs found

    In situ metal organic framework (ZIF-8) and mechanofusion-assisted MWCNT coating of LiFePO/C composite material for lithium-ion batteries

    Get PDF
    LiFePO4 is one of the industrial, scalable cathode materials in lithium-ion battery production, due to its cost-effectiveness and environmental friendliness. However, the electrochemical performance of LiFePO4 in high current rate operation is still limited, due to its poor ionic- and electron-conductive properties. In this study, a zeolitic imidazolate framework (ZIF-8) and multiwalled carbon nanotubes (MWCNT) modified LiFePO4/C (LFP) composite cathode materials were developed and investigated in detail. The ZIF-8 and MWCNT can be used as ionic- and electron-conductive materials, respectively. The surface modification of LFP by ZIF-8 and MWCNT was carried out through in situ wet chemical and mechanical alloy coating. The as-synthesized materials were scrutinized via various characterization methods, such as XRD, SEM, EDX, etc., to determine the material microstructure, morphology, phase, chemical composition, etc. The uniform and stable spherical morphology of LFP composites was obtained when the ZIF-8 coating was processed by the agitator [A], instead of the magnetic stirrer [MS], condition. It was found that the (optimum of) 2 wt.% ZIF-8@LFP [A]/MWCNT composite cathode material exhibited outstanding improvement in high-rate performance; it maintained the discharge capacities of 125 mAh g−1 at 1C, 110 mAh g−1 at 3C, 103 mAh g−1 at 5C, and 91 mAh g−1 at 10C. Better cycling stability with capacity retention of 75.82% at 1C for 100 cycles, as compared to other electrodes prepared in this study, was also revealed. These excellent results were mainly obtained because of the improvement of lithium-ion transport properties, less polarization effect, and interfacial impedance of the LFP composite cathode materials derived from the synergistic effect of both ZIF-8 and MWCNT coating materials

    Unveiling high-power and high-safety lithium-ion battery separator based on interlayer of ZIF-67/cellulose nanofiber with electrospun poly(vinyl alcohol)/melamine nonwoven membranes

    Get PDF
    Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm−1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm−1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g−1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs)

    One pot electrochemical synthesis of poly(melamine) entrapped gold nanoparticles composite for sensitive and low level detection of catechol

    Get PDF
    A simple and cost effective synthesis of nanomaterials with advanced physical and chemical properties have received much attention to the researchers, and is of interest to the researchers from different disciplines. In the present work, we report a simple and one pot electrochemical synthesis of poly(melamine) entrapped gold nanoparticles (PM-AuNPs) composite. The PM-AuNPs composite was prepared by a single step electrochemical method, wherein the AuNPs and PM were simultaneously fabricated on the electrode surface. The as-prepared materials were characterized by various physicochemical methods. The PM-AuNPs composite modified electrode was used as an electrocatalyst for oxidation of catechol (CC) due to its well-defined redox behavior and enhanced electro-oxidation ability towards CC than other modified electrodes. Under optimized conditions, the differential pulse voltammetry (DPV) was used for the determination of CC. The DPV response of CC was linear over the concentration ranging from 0.5 to 175.5 μM with a detection limit of 0.011 μM. The PM-AuNPs composite modified electrode exhibits the high selectivity in the presence of range of potentially interfering compounds including dihydroxybenzene isomers. The sensor shows excellent practicality in CC containing water samples, which reveals the potential ability of PM-AuNPs composite modified electrode towards the determination of CC in real samples

    Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water

    Get PDF
    Mercury (Hg(II)) is considered as one of the most toxic element that directly affects the human health and the environment. Therefore, in this study, we propose a sensitive and disposable electrochemical sensor for the detection of Hg(II) in various water samples using polypyrrole (PPy) decorated graphene/-cyclodextrin (GR-CD) composite modified screen-printed carbon electrode (SPCE). The GRCD/PPy composite was synthesized by chemical oxidation of PPy monomer in GR-CD solution using FeCl3. Differential pulse voltammetry (DPV) is used for the detection of Hg(II) and the DPV results reveal that GR-CD/PPy composite modified SPCE has high sensitivity towards Hg(II) than bare, GR, GR-CD and PPy modified SPCEs. The optimization studies such as effect of pH, accumulating time and effect of scanning potential towards the detection of Hg(II) were investigated. The GR-CD/PPy composite modified SPCE could detect the Hg(II) up to 51.56 M L−1 with the limit of detection (LOD) of 0.47 nM L−1. The obtained LOD was well below the guideline level of Hg(II) set by the World’s Health Organization (WHO) and U.S. Environmental Protection Agency (EPA). In addition, the fabricated GR-CD/PPy composite modified SPCE selectively detected the Hg(II) in the presence of potentially interfering metal cations

    Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine

    Get PDF
    The authors describe an voltammetric catechol (CC) assay based on the use of a glassy carbon electrode (GCE) modified with a composite consisting of graphene oxide and polymelamine (GO/PM). The modified GCE was characterized by field emission scanning electron microscopy, elemental analysis, Raman spectroscopy and FTIR. Cyclic voltammetry reveals a well-defined response to CC, with an oxidation peak current that is distinctly enhanced compared to electrodes modified with GO or PM only. The combined synergetic activity of GO and PM in the composite also results in a lower oxidation potential. Differential pulse voltammetry (DPV) shows a response that is linear in the 0.03 to 138 μM CC concentration range. The detection limit is 8 nM, and the sensitivity is 0.537 μA⋅μM−1 ⋅cm−2 . The sensor is selective for CC even in the presence of potentially interfering compounds including hydroquinone, resorcinol and dopamine. The modified GCE is highly reproducible, stable, sensitive, and shows an excellent practicability for detection of CC in water samples

    Single-crystalline MoO<inf>3</inf>/functionalized multiwalled carbon nanotube nanocomposites for sensing phenothiazine in biological samples

    Get PDF
    The increasing use of pharmaceutical medications has significantly negative repercussions on the environment and human health. Here, a hydrothermal technique was employed to generate a single-crystalline molybdenum trioxide (MoO3)/functionalized multi-walled carbon nanotubes (MoO3/f-MWCNTs) nanocomposite that was then used as a novel electrode material for the electrochemical detection of phenothiazine (PTZ). The encapsulation of hydrothermal synthesized MoO3 nanorods on f-MWCNTs was achieved by the sonochemical method. Extensive characterization of the MoO3/f-MWCNTs nanocomposite is reported by means of spectroscopic and microscopic techniques. The electrode modified with the MoO3/f-MWCNTs nanocomposite displays superior electrocatalytic activity and lower oxidation overpotential (0.492 V vs.Ag/AgCl) to PTZ compared to benchmarking electrodes modified with MoO3 and f-MWCNTs, respectively. Electrodes performance is evaluated by means of differential pulse voltammetry that reveals a low detection limit (7 nM), more comprehensive linear response range (up to 226 µM), and superior sensitivity (2.04 µA µM−1 cm−2). The MoO3/f-MWCNTs nanocomposite electrode can also detect PTZ in the presence of several biological compounds and metal ions in various aqueous environments demonstrating the sensing practicality

    In-situ synthesis of CN@La(OH)3 nanocomposite for improved the charge separation and enhanced the photocatalytic activity towards Cr(VI) reduction under visible light

    No full text
    In this work, we report for the first time a novel graphitic carbon nitride (CN) composited with different weight percentages (5–15%) of La(OH)3 (CN@La(OH)3) for photocatalytic reduction of hexavalent chromium (Cr(VI)) in aqueous solution. In situ fabrication of the CN@La(OH)3 photocatalysts were carried out via a hydrothermal method. The La(OH)3 nanoparticles were deposited onto the surface of CN nanosheets to form heterojunction, as confirmed by series of techniques. Compared to the pure CN and different weight percentages of CN@La(OH)3 nanocomposite, the CN@La(OH)3(10%) nanocomposite exhibited remarkable photocatalytic reduction performance for Cr(VI) under visible light illumination. Such excellent photocatalytic reduction activity ascribed to the more photocatalytic active sites, high visible light harvesting capacity and improved electron-hole separation and transfer efficiency which was confirmed by photocurrent, impedance and photoluminescence results. The photoreduction efficiency and the reduction rate constant was 98.7% and 0.0263 min−1 within 50 min. A possible reaction mechanism for the effective reduction of carcinogenic Cr(VI) is put forward tentatively. Moreover, the developed CN@La(OH)3(10%) nanocomposite also possessed high structural stability and recyclability after five photocatalytic cycles. This work may open up the way into the robust photocatalysis of Cr(VI) in wastewater treatment application

    Degradation of Methylene Blue Dye in the Presence of Visible Light Using SiO2@α-Fe2O3 Nanocomposites Deposited on SnS2 Flowers

    No full text
    Semiconductor materials have been shown to have good photocatalytic behavior and can be utilized for the photodegradation of organic pollutants. In this work, three-dimensional flower-like SnS2 (tin sulfide) was synthesized by a facile hydrothermal method. Core-shell structured SiO2@&alpha;-Fe2O3 nanocomposites were then deposited on the top of the SnS2 flowers. The as-synthesized nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV&ndash;Vis Spectroscopy, Brunauer&ndash;Emmett&ndash;Teller (BET) surface area analysis, and photoluminescence (PL) spectroscopy. The photocatalytic behavior of the SnS2-SiO2@&alpha;-Fe2O3 nanocomposites was investigated by observing the degradation of methylene blue (MB). The results show an effective enhancement of photocatalytic activity for the degradation of MB especially for the 15 wt % SiO2@&alpha;-Fe2O3 nanocomposites on SnS2 flowers

    2D/2D heterostructure Ni-Fe LDH/black phosphorus nanosheets with AuNP for noxious substance diphenylamine detection in food samples

    No full text
    In this study, gold nanoparticles decorated on nickel–iron layered double hydroxide with black phosphorus nanosheets (AuNP/Ni-Fe LDH/BPNSs) composite were prepared using a stirring method. Analyte tracing is required for developing viable sensors. The AuNP/Ni-Fe LDH/BPNSs composite exhibited a large specific surface area, high conductivity, high electrocatalytic activity, and rapid electron transfer. These properties play a vital role in monitoring diphenylamine (DPA) in food samples. The formation of the AuNP/Ni-Fe LDH/BPNS composite was confirmed using various structural and morphological characterization techniques. The electroanalytical character of the AuNP/Ni-Fe LDH/BPNSs composite was evaluated using voltammetry. Interestingly, the AuNP/Ni-Fe LDH/BPNSs showed a wide linear range of 0.0125–1003.825 μM and a detection limit of 4.63 nM with a sensitivity of 0.399 µA µM−1 cm−2. The constructed sensor shows considerable selectivity, stability, repeatability, and reproducibility, and the practicability of DPA was monitored in the apples, sweet tomatoes, pears, and grapes with satisfactory recoveries

    SrMnO<sub>3</sub>/Functionalized h-BN Composite Modified Disposable Sensor for the Voltammetric Determination of Furaltadone Antibiotic Drug

    No full text
    Improper disposal of pharmaceutical drugs, including antibiotics, can affect the ecological system and generate serious health problems for living organisms. In this work, we have developed an electrochemical sensor based on a strontium manganese oxide/functionalized hexagonal boron nitride (SrMnO3/f-BN) electrocatalyst for the detection of the antibiotic drug furaltadone (FLD). Various analytical techniques were used to characterize the physicochemical properties of the as-prepared SrMnO3/f-BN composite. The as-fabricated SrMnO3/f-BN composite electrode showed excellent sensing activity towards FLD, with a wide linear range (0.01–152.11 µM) and low detection limit (2.0 nM). The sensor exhibited good selectivity towards FLD for detection in the presence of various interfering species (nitro compounds, metal ions, and biological compounds). Interestingly, real-time analysis using the proposed SrMnO3/f-BN composite was able to determine the FLD content in human urine and wastewater samples with good recovery. Hence, the as-developed SrMnO3/f-BN modified sensor could be viable in practical applications to target the antibiotic drug FLD in both human fluids and environmental samples
    corecore