611 research outputs found

    Spontaneous regression of a cystic cavum septum pellucidum

    Get PDF
    ManuscriptA persistent cavum septum pellucidum (CSP) is present in ~0.73% of adults, although its incidence ranges from 0.14 to 18.9% depending on the detection method. Cystic CSP is even rarer. A cyst causing mass within the CSP can obstruct the intraventricular foramen, leading to blockage of CSF flow and possible hydrocephalus, often justifying surgical intervention. We describe spontaneous decompression of a cystic CSP in a 36-year-old man. Initial MRI showed a cystic CSP with lateral bowing of the septal walls to 1.9 cm. Follow-up MRI 15 months later demonstrated no lateral bowing, and the septal wall width was 1.0 cm. This spontaneous decompression was not explained by the one previously described case report of cystic CSP regression

    Mapping of Mature and Young Oil Palm Distributions in a Humid Tropical River Basin for Flood Vulnerability Assessment

    Get PDF
    International Conference on the Ocean and Earth Sciences 18-20 November 2020, Jakarta Selatan, IndonesiaOil palm is one of the key drivers of economic growth in some regions in the humid tropical countries such as Indonesia. Previous studies show that floods risk at particular river basins in Indonesia will increase in the future due to climate change. This will give negative impacts to the sustainable production of palm oil in the future and subsequently the regions' economy. Discussion on adaptation strategies on this matter is necessary however, the vulnerability of oil palm plantations against floods at river basin scale are still poorly understood. Field surveys for oil palms' vulnerability at such scale is costly in time, labour and resources, and making use of remote sensing is more feasible. The aim of this study is to use remote sensing in assessing oil palm vulnerability against floods at river basin scale. To achieve this objective two oil palm distribution maps which were developed using Sentinel imageries for years 2015 and 2018 allowing young oil palms to be matured under normal condition. To understand the impact of floods to oil palms, a composite of flood extents using radar scenes for years 2016 and 2017 was developed. Our results show that young oil palms are highly vulnerable to floods compared to matured ones. Only 6% of the earlier could survived floods and be matured in time, while most of the matured ones could survive

    Complexity, Development, and Evolution in Morphogenetic Collective Systems

    Full text link
    Many living and non-living complex systems can be modeled and understood as collective systems made of heterogeneous components that self-organize and generate nontrivial morphological structures and behaviors. This chapter presents a brief overview of our recent effort that investigated various aspects of such morphogenetic collective systems. We first propose a theoretical classification scheme that distinguishes four complexity levels of morphogenetic collective systems based on the nature of their components and interactions. We conducted a series of computational experiments using a self-propelled particle swarm model to investigate the effects of (1) heterogeneity of components, (2) differentiation/re-differentiation of components, and (3) local information sharing among components, on the self-organization of a collective system. Results showed that (a) heterogeneity of components had a strong impact on the system's structure and behavior, (b) dynamic differentiation/re-differentiation of components and local information sharing helped the system maintain spatially adjacent, coherent organization, (c) dynamic differentiation/re-differentiation contributed to the development of more diverse structures and behaviors, and (d) stochastic re-differentiation of components naturally realized a self-repair capability of self-organizing morphologies. We also explored evolutionary methods to design novel self-organizing patterns, using interactive evolutionary computation and spontaneous evolution within an artificial ecosystem. These self-organizing patterns were found to be remarkably robust against dimensional changes from 2D to 3D, although evolution worked efficiently only in 2D settings.Comment: 13 pages, 8 figures, 1 table; submitted to "Evolution, Development, and Complexity: Multiscale Models in Complex Adaptive Systems" (Springer Proceedings in Complexity Series

    Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis

    Get PDF
    An adaptive network model using SIS epidemic propagation with link-type-dependent link activation and deletion is considered. Bifurcation analysis of the pairwise ODE approximation and the network-based stochastic simulation is carried out, showing that three typical behaviours may occur; namely, oscillations can be observed besides disease-free or endemic steady states. The oscillatory behaviour in the stochastic simulations is studied using Fourier analysis, as well as through analysing the exact master equations of the stochastic model. By going beyond simply comparing simulation results to mean-field models, our approach yields deeper insights into the observed phenomena and help better understand and map out the limitations of mean-field models

    Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    Get PDF
    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme typhoon events provides more realistic coastal SSS and may allow a different scenario analysis with various precipitation inputs for developing a nowcasting analysis in the future

    Social network dynamics of face-to-face interactions

    Full text link
    The recent availability of data describing social networks is changing our understanding of the "microscopic structure" of a social tie. A social tie indeed is an aggregated outcome of many social interactions such as face-to-face conversations or phone-calls. Analysis of data on face-to-face interactions shows that such events, as many other human activities, are bursty, with very heterogeneous durations. In this paper we present a model for social interactions at short time scales, aimed at describing contexts such as conference venues in which individuals interact in small groups. We present a detailed anayltical and numerical study of the model's dynamical properties, and show that it reproduces important features of empirical data. The model allows for many generalizations toward an increasingly realistic description of social interactions. In particular in this paper we investigate the case where the agents have intrinsic heterogeneities in their social behavior, or where dynamic variations of the local number of individuals are included. Finally we propose this model as a very flexible framework to investigate how dynamical processes unfold in social networks.Comment: 20 pages, 25 figure

    An interview based study of pioneering experiences in teaching and learning Complex Systems in Higher Education

    Get PDF
    Due to the interdisciplinary nature of complex systems as a field, students studying complex systems at University level have diverse disciplinary backgrounds. This brings challenges (e.g. wide range of computer programming skills) but also opportunities (e.g. facilitating interdisciplinary interactions and projects) for the classroom. However, there is little published regarding how these challenges and opportunities are handled in teaching and learning Complex Systems as an explicit subject in higher education, and how this differs in comparison to other subject areas. We seek to explore these particular challenges and opportunities via an interview-based study of pioneering teachers and learners (conducted amongst the authors) regarding their experiences. We compare and contrast those experiences, and analyse them with respect to the educational literature. Our discussions explored: approaches to curriculum design, how theories/models/frameworks of teaching and learning informed decisions and experience, how diversity in student backgrounds was addressed, and assessment task design. We found a striking level of commonality in the issues expressed as well as the strategies to handle them, for example a significant focus on problem-based learning, and the use of major student-led creative projects for both achieving and assessing learning outcomes.Comment: 16 page

    Isolation-by-Distance and Outbreeding Depression Are Sufficient to Drive Parapatric Speciation in the Absence of Environmental Influences

    Get PDF
    A commonly held view in evolutionary biology is that speciation (the emergence of genetically distinct and reproductively incompatible subpopulations) is driven by external environmental constraints, such as localized barriers to dispersal or habitat-based variation in selection pressures. We have developed a spatially explicit model of a biological population to study the emergence of spatial and temporal patterns of genetic diversity in the absence of predetermined subpopulation boundaries. We propose a 2-D cellular automata model showing that an initially homogeneous population might spontaneously subdivide into reproductively incompatible species through sheer isolation-by-distance when the viability of offspring decreases as the genomes of parental gametes become increasingly different. This simple implementation of the Dobzhansky-Muller model provides the basis for assessing the process and completion of speciation, which is deemed to occur when there is complete postzygotic isolation between two subpopulations. The model shows an inherent tendency toward spatial self-organization, as has been the case with other spatially explicit models of evolution. A well-mixed version of the model exhibits a relatively stable and unimodal distribution of genetic differences as has been shown with previous models. A much more interesting pattern of temporal waves, however, emerges when the dispersal of individuals is limited to short distances. Each wave represents a subset of comparisons between members of emergent subpopulations diverging from one another, and a subset of these divergences proceeds to the point of speciation. The long-term persistence of diverging subpopulations is the essence of speciation in biological populations, so the rhythmic diversity waves that we have observed suggest an inherent disposition for a population experiencing isolation-by-distance to generate new species

    RoboCup 2D Soccer Simulation League: Evaluation Challenges

    Full text link
    We summarise the results of RoboCup 2D Soccer Simulation League in 2016 (Leipzig), including the main competition and the evaluation round. The evaluation round held in Leipzig confirmed the strength of RoboCup-2015 champion (WrightEagle, i.e. WE2015) in the League, with only eventual finalists of 2016 competition capable of defeating WE2015. An extended, post-Leipzig, round-robin tournament which included the top 8 teams of 2016, as well as WE2015, with over 1000 games played for each pair, placed WE2015 third behind the champion team (Gliders2016) and the runner-up (HELIOS2016). This establishes WE2015 as a stable benchmark for the 2D Simulation League. We then contrast two ranking methods and suggest two options for future evaluation challenges. The first one, "The Champions Simulation League", is proposed to include 6 previous champions, directly competing against each other in a round-robin tournament, with the view to systematically trace the advancements in the League. The second proposal, "The Global Challenge", is aimed to increase the realism of the environmental conditions during the simulated games, by simulating specific features of different participating countries.Comment: 12 pages, RoboCup-2017, Nagoya, Japan, July 201

    Analysis of comorbid factors that increase the COPD assessment test scores

    Get PDF
    Background: The chronic obstructive pulmonary disease (COPD) Assessment Test (CAT) is a concise health status measure for COPD. COPD patients have a variety of comorbidities, but little is known about their impact on quality of life. This study was designed to investigate comorbid factors that may contribute to high CAT scores. Methods: An observational study at Keio University and affiliated hospitals enrolled 336 COPD patients and 67 non-COPD subjects. Health status was assessed by the CAT, the St. Georges Respiratory Questionnaire (SGRQ), and all components of the Medical Outcomes Study Short-Form 36-Item (SF-36) version 2, which is a generic measure of health. Comorbidities were identified based on patients’ reports, physicians’ records, and questionnaires, including the Frequency Scale for the Symptoms of Gastro-esophageal reflux disease (GERD) and the Hospital Anxiety and Depression Scale. Dual X-ray absorptiometry measurements of bone mineral density were performed. Results: The CAT showed moderate-good correlations with the SGRQ and all components of the SF-36. The presence of GERD, depression, arrhythmia, and anxiety was significantly associated with a high CAT score in the COPD patients. Conclusions: Symptomatic COPD patients have a high prevalence of comorbidities. A high CAT score should alert the clinician to a higher likelihood of certain comorbidities such as GERD and depression, because these diseases may co-exist unrecognize
    corecore