10 research outputs found

    Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells.

    Get PDF
    Post-transcriptional regulation is a powerful mediator of gene expression, and can rapidly alter the expression of numerous transcripts involved in tumorigenesis. We have previously shown that the mRNA-binding protein HuR (ELAVL1) is elevated in human pancreatic ductal adenocarcinoma (PDA) specimens compared to normal pancreatic tissues, and its cytoplasmic localization is associated with increased tumor stage. To gain a better insight into HuR\u27s role in PDA biology and to assess it as a candidate therapeutic target, we altered HuR expression in PDA cell lines and characterized the resulting phenotype in preclinical models. HuR silencing by short hairpin and small interfering RNAs significantly decreased cell proliferation and anchorage-independent growth, as well as impaired migration and invasion. In comparison, HuR overexpression increased migration and invasion, but had no significant effects on cell proliferation and anchorage-independent growth. Importantly, two distinct targeted approaches to HuR silencing showed marked impairment in tumor growth in mouse xenografts. NanoString nCounter® analyses demonstrated that HuR regulates core biological processes, highlighting that HuR inhibition likely thwarts PDA viability through post-transcriptional regulation of diverse signaling pathways (e.g. cell cycle, apoptosis, DNA repair). Taken together, our study suggests that targeted inhibition of HuR may be a novel, promising approach to the treatment of PDA

    Rapid Optimization of Gene Delivery by Parallel End-Modification of Poly(β-amino ester)s

    No full text
    Poly(β-amino ester)s are cationic degradable polymers that have significant potential as gene delivery vectors. Here we present a generalized method to modify poly(β-amino ester)s at the chain ends to improve their delivery performance. End-chain coupling reactions were developed so that polymers could be synthesized and tested in a high-throughput manner, without the need for purification. In this way, many structural variations at the polymer terminus could be rapidly evaluated. Endmodification of the terminal amine structure of a previously optimized poly(β-amino ester), C32, significantly enhanced its in vitro transfection efficiency. In vivo, intraperitoneal (IP) gene delivery using end-modified C32 polymers resulted in expression levels over one order of magnitude higher than unmodified C32 and jetpolyethylenimine (jet-PEI) levels in several abdominal organs. The rapid end-modification strategy presented here has led to the discovery of many effective polymers for gene delivery and may be a useful method to develop and optimize cationic polymers for gene therapy

    Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(ß-amino ester)s

    No full text
    Poly(ß-amino ester)s are cationic degradable polymers that have significant potential as gene delivery vectors. Here we present a generalized method to modify poly(ß-amino ester)s at the chain ends to improve their delivery performance. End-chain coupling reactions were developed so that polymers could be synthesized and tested in a high-throughput manner, without the need for purification. In this way, many structural variations at the polymer terminus could be rapidly evaluated. End-modification of the terminal amine structure of a previously optimized poly(ß-amino ester), C32, significantly enhanced its in vitro transfection efficiency. In vivo, intraperitoneal (IP) gene delivery using end-modified C32 polymers resulted in expression levels over one order of magnitude higher than unmodified C32 and jet-polyethylenimine (jet-PEI) levels in several abdominal organs. The rapid end-modification strategy presented here has led to the discovery of many effective polymers for gene delivery and may be a useful method to develop and optimize cationic polymers for gene therapy

    Genome-wide significant risk associations for mucinous ovarian carcinoma

    No full text
    Genome-wide association studies have identified several risk associations for ovarian carcinomas but not for mucinous ovarian carcinomas (MOCs). Our analysis of 1,644 MOC cases and 21,693 controls with imputation identified 3 new risk associations: rs752590 at 2q13 (P = 3.3 × 10(-8)), rs711830 at 2q31.1 (P = 7.5 × 10(-12)) and rs688187 at 19q13.2 (P = 6.8 × 10(-13)). We identified significant expression quantitative trait locus (eQTL) associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10(-4), false discovery rate (FDR) = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk-associated SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease.status: publishe
    corecore