39 research outputs found
Effect of water deficit on fruit metabolism in white and red grape varieties
Peterlunger, EnricoCastellarin, Simone DiegoGMPF1openPlants are sessile organisms and often they have to cope with environmental stresses (abiotic factors) such as drought, cold, heat, extreme light, excessive soil salinity, or several combinations of them. The genotype x environment (GxE) interaction is the source of the main variability in the responses to these constrains. Among the abiotic factors that can influence plant physiology, drought is the most relevant because it can influence plant growth and yield, and affects fruits composition. Secondary metabolism contributes to the adaptation of a plant to its environment. In fruit crops such as grapevine (Vitis vinifera L.), secondary metabolism also largely determines fruit quality. Grapevine is considered a drought-tolerant plant and traditionally is not irrigated, especially in Europe. Mediterranean climate, with warm and dry summers and cold and wet winters, is considered optimal for viticulture. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the accumulation of secondary metabolites in the grapes, thus affecting wine quality.
We adopted a multidisciplinary approach that considered a two-years field trial, high-throughput transcripts profiling (RNA-sequencing) and large-scale targeted metabolite analyses to investigate the effect of drought events on the berry metabolism during fruit development and ripening in white and red grape varieties. An open field experiment was therefore conducted on Tocai friulano (white grape variety) and Merlot (red grape variety) vines in 2011 and 2012, in a North Italian viticultural area characterized by transient drought events during the summer. Two irrigation treatments were applied to the vines: (i) control vines were weekly irrigated, in order to keep their stem water potential (a sensitive indicator of grapevine water status) between -0.4 and -0.6 MPa; (ii) deficit irrigated vines were not irrigated from fruit set to harvest except in case of acute water deficit. Merlot vines were sheltered with an open-sided transparent cover at the beginning of the seasons, while Tocai friulano vines were cultivated without any cover and hence subjected to the natural precipitations. In Merlot, deficit irrigated vines experienced water deficit from 40-50 days after anthesis in both seasons. In Tocai friulano, deficit irrigated vines manifested a late deficit (from 80-90 days after anthesis) in 2011, and a prolonged water deficit from early stages of fruit development (from 30-40 days after anthesis) to harvest in 2012. For both varieties, berries were sampled for transcript and metabolite analyses during berry development and ripening. Furthermore, at harvest, grapes were microvinificated and wines composition was evaluated focusing on the secondary metabolites that largely contribute to the final color, taste, and aromatic features.
A large effect of water deficit on fruit secondary metabolism of the white grape variety Tocai friulano was observed in the season when the deficit occurred from early stages of berry development to harvest. In this particularly season, increased concentrations of phenylpropanoids, monoterpenes, and tocopherols were observed, while carotenoid and flavonoid accumulations were differentially modulated by water deficit accordingly to the berry developmental stage. In parallel, RNA sequencing analysis revealed that many key genes of the phenylpropanoid, flavonoid, and terpenoid pathways were modulated by water deficit indicating a transcriptional regulation of these specific pathways in the berry under drought. The higher co-regulation of several terpenoid transcripts with monoterpene accumulation under water deficit and the enrichment of drought-responsive elements in the promoter region of many terpenoid genes highlight that drought can enhance the production of these flavour components in grapes with potential effects on wine composition and sensory features. The wines produced from grapes subjected to water deficit revealed a more pronounced accumulation of monoterpenes and C13-norisoprenoids, and especially glycosidically-bound compounds. However, differences in the metabolic response between seasons suggest that the endurance of water deficit and the timing of application strongly impact this response.
In Merlot berries, the drought stress response encompassed both ABA-dependent and ABA-independent signal transduction pathways with several VviAREB/ABFs, VvibZIP, and VviAP2/ERF-DREB transcription factors that were up-regulated by water deficit at one or more developmental stages. These transcription factors can play critical roles in the drought response by modulating a large suite of genes. Analyses of the central and specialized berry metabolism was conducted both at the transcript and metabolite levels by investigating several metabolic pathways (glycolysis and sugar accumulation, tricarboxylic acid cycle and amino acid biosynthesis, phenylpropanoid, flavonoid, terpenes, carotenoids, and fatty acid degradation pathways). The study revealed that water deficit enhanced the accumulation of several osmoprotectants (proline, sucrose, and raffinose) and of secondary metabolites such as anthocyanins and C5, C7, C8, and C9 volatile organic compounds. Furthermore, a weighted gene co-expression network analysis clustered in a module several genes involved in the branched chain amino acids biosynthesis, phenylpropanoid and flavonoid pathways, and sugar derivative metabolism together with the transcription factors mentioned above involved in the drought-stress signal, indicating a putative role of these transcription factors on the regulation of the response of the fruit metabolism to drought in Merlot berries. The wines produced from grapes subjected to water deficit revealed a higher concentration of anthocyanins that determined higher color intensity and a bluer coloration of the wines.
A comparison between the two genotypes can be done only for the 2012 season, when levels and endurances of water deficit were similar between Tocai friulano and Merlot deficit irrigated vines. The data indicate that water deficit modulated the accumulation of several secondary compounds; however, the modulation of the secondary metabolism varied between cultivars indicating a genotype x environment interaction. In the Tocai friulano berry, water deficit specifically stimulated the synthesis of phenolic acids, such as gallic acid, ellagic acid, and caftaric acid, tocopherols, and monoterpenes, such as linalool, α-terpineol, nerol, and hotrienol. In Merlot, the response included an overproduction of anthocyanins, such as the tri-substituted delphinidin, petunidin, and malvidin both in the glycosylated and acylated form, and C5, C7, C8 and C9 volatile organic, such as 1-penten-3-ol, (E)-2-heptenal, (E)-2-octenal, 1-octen-3-ol, and nonanol. A common response between the two varieties included a higher accumulation of gallic acid, zeaxanthin, (E)-2-heptenal, (E)-2-octenal, 1-octen-3-ol, and nonanol in the berry. Furthermore, these results indicate that drought events can affect the composition and sensory features of white and red wines by increasing the accumulation of benzoic and cinnamic acids, pigments in the red grape variety and monoterpenes in the white grape variety.embargoed_20170407Savoi, S.Savoi, S
Molecular regulation of apple and grape ripening: exploring common and distinct transcriptional aspects of representative climacteric and non-climacteric fruits
Fleshy fruits of angiosperms are organs specialized for promoting seed dispersal by attracting herbivores and enticing them to consume the organ and the seeds it contains. Ripening can be broadly defined as the processes serving as a plant strategy to make the fleshy fruit appealing to animals, consisting of a coordinated series of changes in color, texture, aroma, and flavor that result from an intricate interplay of genetically and epigenetically programmed events. The ripening of fruits can be categorized into two types: climacteric, which is characterized by a rapid increase in respiration rate typically accompanied by a burst of ethylene production, and non-climacteric, in which this pronounced peak in respiration is absent. Here we review current knowledge of transcriptomic changes taking place in apple (Malus x domestica, climacteric) and grapevine (Vitis vinifera, non-climacteric) fruit during ripening, with the aim of highlighting specific and common hormonal and molecular events governing the process in the two species. With this perspective, we found that specific NAC transcription factor members participate in ripening initiation in grape and are involved in restoring normal physiological ripening progression in impaired fruit ripening in apple. These elements suggest the existence of a common regulatory mechanism operated by NAC transcription factors and auxin in the two species.This review summarizes the main transcriptional events coordinating the ripening processes in both climacteric (apple) and non-climacteric (grape) models, focusing on transcription factors and hormonal regulation
Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.)
Background:
Secondary metabolism contributes to the adaptation of a plant to its environment. In wine grapes, fruit secondary metabolism largely determines wine quality. Climate change is predicted to exacerbate drought events in several viticultural areas, potentially affecting the wine quality. In red grapes, water deficit modulates flavonoid accumulation, leading to major quantitative and compositional changes in the profile of the anthocyanin pigments; in white grapes, the effect of water deficit on secondary metabolism is still largely unknown
Results:
In this study we investigated the impact of water deficit on the secondary metabolism of white grapes using a large scale metabolite and transcript profiling approach in a season characterized by prolonged drought. Irrigated grapevines were compared to non-irrigated grapevines that suffered from water deficit from early stages of berry development to harvest. A large effect of water deficit on fruit secondary metabolism was observed. Increased concentrations of phenylpropanoids, monoterpenes, and tocopherols were detected, while carotenoid and flavonoid accumulations were differentially modulated by water deficit according to the berry developmental stage. The RNA- sequencing analysis carried out on berries collected at three developmental stages—before, at the onset, and at late ripening—indicated that water deficit affected the expression of 4,889 genes. The Gene Ontology category secondary metabolic process was overrepresented within up-regulated genes at all the stages of fruit development considered, and within down-regulated genes before ripening. Eighteen phenylpropanoid, 16 flavonoid, 9 carotenoid, and 16 terpenoid structural genes were modulated by water deficit, indicating the transcriptional regulation of these metabolic pathways in fruit exposed to water deficit. An integrated network and promoter analyses identified a transcriptional regulatory module that encompasses terpenoid genes, transcription factors, and enriched drought- responsive elements in the promoter regions of those genes as part of the grapes response to drought
Conclusion:
Our study reveals that grapevine berries respond to drought by modulating several secondary metabolic pathways, and particularly, by stimulating the production of phenylpropanoids, the carotenoid zeaxanthin, and of volatile organic compounds such as monoterpenes, with potential effects on grape and wine antioxidant potential, composition, and sensory feature
Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit
Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis-regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.This study was funded by the European Territorial Cooperation program (Sustainable viticulture and improvement of
the territorial resources of the grape and wine industry), the
Fondazione Edmund Mach (GMPF Program), the COST Action
FA1106 Quality Fruit, Genome British Columbia (10R21188),
and the Natural Sciences and Engineering Research Council of
Canada (10R23082)
Effects of initial-state dynamics on collective flow within a coupled transport and viscous hydrodynamic approach
We evaluate the effects of preequilibrium dynamics on observables in
ultrarelativistic heavy-ion collisions. We simulate the initial nonequilibrium
phase within A MultiPhase Transport (AMPT) model, while the subsequent
near-equilibrium evolution is modeled using (2+1)-dimensional relativistic
viscous hydrodynamics. We match the two stages of evolution carefully by
calculating the full energy-momentum tensor from AMPT and using it as input for
the hydrodynamic evolution. We find that when the preequilibrium evolution is
taken into account, final-state observables are insensitive to the switching
time from AMPT to hydrodynamics. Unlike some earlier treatments of
preequilibrium dynamics, we do not find the initial shear viscous tensor to be
large. With a shear viscosity to entropy density ratio of , our model
describes quantitatively a large set of experimental data on Pb+Pb collisions
at the Large Hadron Collider(LHC) over a wide range of centrality: differential
anisotropic flow , event-plane correlations, correlation
between and , and cumulant ratio .Comment: 10 pages, v2: minor revisio
Comparative Transcriptome Analysis of Two Root-Feeding Grape Phylloxera (D. vitifoliae) Lineages Feeding on a Rootstock and V. vinifera
Grape phylloxera is one of the most dangerous insect pests for worldwide viticulture. The leaf- and root-galling phylloxerid has been managed by grafting European grapevines onto American rootstock hybrids. Recent reports pinpoint the appearance of host-adapted biotypes, but information about the biomolecular characteristics underlying grape phylloxera biotypisation and its role in host performance is scarce. Using RNA-sequencing, we sequenced the transcriptome of two larval stages: L1 (probing) and L2-3 (feeding) larvae of two root-feeding grape phylloxera lineages feeding on the rootstock Teleki 5C (biotype C) and V. vinifera Riesling (biotype A). In total, 7501 differentially expressed genes (DEGs) were commonly modulated by the two biotypes. For the probing larvae, we found an increased number of DEGs functionally associated with insect chemoreception traits, such as odorant-binding proteins, chemosensory proteins, ionotropic, odorant, and gustatory receptors. The transcriptomic profile of feeding larvae was enriched with DEGs associated with the primary metabolism. Larvae feeding on the tolerant rootstock Teleki 5C exhibited higher numbers of plant defense suppression-associated DEGs than larvae feeding on the susceptible host. Based on the identified DEGs, we discuss their potential role for the compatible grape phylloxera–Vitis interaction belowground. This study was the first to compare the transcriptomes of two grape phylloxera lineages feeding on a tolerant and susceptible host, respectively, and to identify DEGs involved in the molecular interaction with these hosts. Our data provide a source for future studies on host adaptation mechanisms of grape phylloxera and help to elucidate grape phylloxera resistance further
Differentially expressed genes in berries and rachis of berry shrivel grape clusters used to prepare figures for a review
<p>Grapevine berry shrivel is a ripening disorder leading to significant economic losses in the worldwide wine and table grape industries. Sugar accumulation stops early after ripening onset accompanied with cell death in berreis and subtending pecicels and rachis finally resulting in berry shrinkage. To date, the triggers of BS remain unknown. The dataset supports figures prepared for an review which aims to summarize and critically discuss the current knowledge. Data are expressed as differentially expressed genes obtained from grape berries samples collected at six developmental stages (pre- until post-veraison) analysed with RNASeq and two pooled samples (pre- and BS symptomatic) from the rachis analyzed with a microarray study. Extracted information focus on primary metabolic processes including sugar transport and metabolism, organic acid metabolism, stress signaling and cell as well as cell wall organisation. Data are mean values of three biological represent and presented as log2 fold changes including statistical information. A meta-data sheet provides the most relevant information and references. </p>
Exploring the mechanisms of grapevine single berry development and ripening
International audienceContext and purpose of the studyThe strategy of single berry phenotyping is a recently rediscovered research tool that has gained great attention. The latest studies have indicated that previous physiological models based on pooling asynchronous populations of berries provided biased or blurred information on berry development key players. The possibility of monitoring and sampling single synchronized berries to study their development sequentially has opened new lines of research aimed at unraveling the genes that regulate grapevine fruit development. This study aimed to decipher the gene pathways responsible for the activation/deactivation of physiological processes involved in the green phase of growth, the onset of ripening, and the second growth phase.Material and methodsThe growth of single berries of V. vinifera cv. ‘Syrah’ was pictured from flowering until over-ripening through biweekly images in the experimental vineyard of Institut Agro Montpellier, France. Thirty-three single berries (11 developmental phases x 3 biological replicates) were selected for RNA Sequencing based on the relative growth curve and primary metabolite concentrations (sugars and acids) as in Savoi et al. (2021) covering key phases or changes in kinetics during the whole berry development. Specific attention was dedicated to berry softening. Here it is acknowledged as a drop in the fruit tissue firmness and a simultaneous decrease in the glucose/fructose ratio. Gene expressions were normalized and tested for time-series significance leading to twenty-five clusters representing 10,355 genes significantly modulated by development