20 research outputs found
Effectiveness of streptococcus pneumoniae urinary antigen testing in decreasing mortality of COVID-19 co-infected patients: A clinical investigation
Background and objectives: Streptococcus pneumoniae urinary antigen (u-Ag) testing has recently gained attention in the early diagnosis of severe and critical acute respiratory syndrome coronavirus-2/pneumococcal co-infection. The aim of this study is to assess the effectiveness of Streptococcus pneumoniae u-Ag testing in coronavirus disease 2019 (COVID-19) patients, in order to assess whether pneumococcal co-infection is associated with different mortality rate and hospital stay in these patients. Materials and Methods: Charts, protocols, mortality, and hospitalization data of a consecutive series of COVID-19 patients admitted to a tertiary hospital in northern Italy during COVID-19 outbreak were retrospectively reviewed. All patients underwent Streptococcus pneumoniae u-Ag testing to detect an underlying pneumococcal co-infection. Covid19+/u-Ag+ and Covid19+/u-Ag-patients were compared in terms of overall survival and length of hospital stay using chi-square test and survival analysis. Results: Out of 575 patients with documented pneumonia, 13% screened positive for the u-Ag test. All u-Ag+ patients underwent treatment with Ceftriaxone and Azithromycin or Levofloxacin. Lopinavir/Ritonavir or Darunavir/Cobicistat were added in 44 patients, and hydroxychloroquine and low-molecular-weight heparin (LMWH) in 47 and 33 patients, respectively. All u-Ag+ patients were hospitalized. Mortality was 15.4% and 25.9% in u-Ag+ and u-Ag-patients, respectively (p = 0.09). Survival analysis showed a better prognosis, albeit not significant, in u-Ag+ patients. Median hospital stay did not differ among groups (10 vs. 9 days, p = 0.71). Conclusions: The routine use of Streptococcus pneumoniae u-Ag testing helped to better target antibiotic therapy with a final trend of reduction in mortality of u-Ag+ COVID-19 patients having a concomitant pneumococcal infection. Randomized trials on larger cohorts are necessary in order to draw definitive conclusion
Clinical outcomes in the second versus first pandemic wave in italy: Impact of hospital changes and reorganization
The region of Lombardy was the epicenter of the COVID‐19 outbreak in Italy. Emergency Hospital 19 (EH19) was built in the Milan metropolitan area during the pandemic’s second wave as a facility of Humanitas Clinical and Research Center (HCRC). The present study aimed to assess whether the implementation of EH19 was effective in improving the quality of care of COVID‐19 patients during the second wave compared with the first one. The demographics, mortality rate, and in‐hospital length of stay (LOS) of two groups of patients were compared: the study group involved patients admitted at HCRC and managed in EH19 during the second pandemic wave, while the control group included patients managed exclusively at HCRC throughout the first wave. The study and control group included 903 (56.7%) and 690 (43.3%) patients, respectively. The study group was six years older on average and had more pre‐existing comorbidities. EH19 was associated with a decrease in the intensive care unit admission rate (16.9% vs. 8.75%, p < 0.001), and an equal decrease in invasive oxygen therapy (3.8% vs. 0.23%, p < 0.001). Crude mortality was similar but overlap propensity score weighting revealed a trend toward a potential small decrease. The adjusted difference in LOS was not significant. The implementation of an additional COVID‐ 19 hospital facility was effective in improving the overall quality of care of COVID‐19 patients during the first wave of the pandemic when compared with the second. Further studies are necessary to validate the suggested approach
MOSAIC: An Artificial Intelligence-Based Framework for Multimodal Analysis, Classification, and Personalized Prognostic Assessment in Rare Cancers
PURPOSERare cancers constitute over 20% of human neoplasms, often affecting patients with unmet medical needs. The development of effective classification and prognostication systems is crucial to improve the decision-making process and drive innovative treatment strategies. We have created and implemented MOSAIC, an artificial intelligence (AI)-based framework designed for multimodal analysis, classification, and personalized prognostic assessment in rare cancers. Clinical validation was performed on myelodysplastic syndrome (MDS), a rare hematologic cancer with clinical and genomic heterogeneities.METHODSWe analyzed 4,427 patients with MDS divided into training and validation cohorts. Deep learning methods were applied to integrate and impute clinical/genomic features. Clustering was performed by combining Uniform Manifold Approximation and Projection for Dimension Reduction + Hierarchical Density-Based Spatial Clustering of Applications with Noise (UMAP + HDBSCAN) methods, compared with the conventional Hierarchical Dirichlet Process (HDP). Linear and AI-based nonlinear approaches were compared for survival prediction. Explainable AI (Shapley Additive Explanations approach [SHAP]) and federated learning were used to improve the interpretation and the performance of the clinical models, integrating them into distributed infrastructure.RESULTSUMAP + HDBSCAN clustering obtained a more granular patient stratification, achieving a higher average silhouette coefficient (0.16) with respect to HDP (0.01) and higher balanced accuracy in cluster classification by Random Forest (92.7% +/- 1.3% and 85.8% +/- 0.8%). AI methods for survival prediction outperform conventional statistical techniques and the reference prognostic tool for MDS. Nonlinear Gradient Boosting Survival stands in the internal (Concordance-Index [C-Index], 0.77; SD, 0.01) and external validation (C-Index, 0.74; SD, 0.02). SHAP analysis revealed that similar features drove patients' subgroups and outcomes in both training and validation cohorts. Federated implementation improved the accuracy of developed models.CONCLUSIONMOSAIC provides an explainable and robust framework to optimize classification and prognostic assessment of rare cancers. AI-based approaches demonstrated superior accuracy in capturing genomic similarities and providing individual prognostic information compared with conventional statistical methods. Its federated implementation ensures broad clinical application, guaranteeing high performance and data protection
Real-World Validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes
PURPOSE Myelodysplastic syndromes (MDS) are heterogeneous myeloid neoplasms in which a risk-adapted treatment strategy is needed. Recently, a new clinical-molecular prognostic model, the Molecular International Prognostic Scoring System (IPSS-M) was proposed to improve the prediction of clinical outcome of the currently available tool (Revised International Prognostic Scoring System [IPSS-R]). We aimed to provide an extensive validation of IPSS-M.METHODS A total of 2,876 patients with primary MDS from the GenoMed4All consortium were retrospectively analyzed.RESULTS IPSS-M improved prognostic discrimination across all clinical end points with respect to IPSS-R (concordance was 0.81 v 0.74 for overall survival and 0.89 v 0.76 for leukemia-free survival, respectively). This was true even in those patients without detectable gene mutations. Compared with the IPSS-R based stratification, the IPSS-M risk group changed in 46% of patients (23.6% and 22.4% of subjects were upstaged and downstaged, respectively).In patients treated with hematopoietic stem cell transplantation (HSCT), IPSS-M significantly improved the prediction of the risk of disease relapse and the probability of post-transplantation survival versus IPSS-R (concordance was 0.76 v 0.60 for overall survival and 0.89 v 0.70 for probability of relapse, respectively). In high-risk patients treated with hypomethylating agents (HMA), IPSS-M failed to stratify individual probability of response; response duration and probability of survival were inversely related to IPSS-M risk.Finally, we tested the accuracy in predicting IPSS-M when molecular information was missed and we defined a minimum set of 15 relevant genes associated with high performance of the score.CONCLUSION IPSS-M improves MDS prognostication and might result in a more effective selection of candidates to HSCT. Additional factors other than gene mutations can be involved in determining HMA sensitivity. The definition of a minimum set of relevant genes may facilitate the clinical implementation of the score
Clinical and Genomic-Based Decision Support System to Define the Optimal Timing of Allogeneic Hematopoietic Stem-Cell Transplantation in Patients With Myelodysplastic Syndromes
PURPOSE Allogeneic hematopoietic stem-cell transplantation (HSCT) is the only potentially curative treatment for patients with myelodysplastic syndromes (MDS). Several issues must be considered when evaluating the benefits and risks of HSCT for patients with MDS, with the timing of transplantation being a crucial question. Here, we aimed to develop and validate a decision support system to define the optimal timing of HSCT for patients with MDS on the basis of clinical and genomic information as provided by the Molecular International Prognostic Scoring System (IPSS-M). PATIENTS AND METHODS We studied a retrospective population of 7,118 patients, stratified into training and validation cohorts. A decision strategy was built to estimate the average survival over an 8-year time horizon (restricted mean survival time [RMST]) for each combination of clinical and genomic covariates and to determine the optimal transplantation policy by comparing different strategies. RESULTS Under an IPSS-M based policy, patients with either low and moderate-low risk benefited from a delayed transplantation policy, whereas in those belonging to moderately high-, high- and very high-risk categories, immediate transplantation was associated with a prolonged life expectancy (RMST). Modeling decision analysis on IPSS-M versus conventional Revised IPSS (IPSS-R) changed the transplantation policy in a significant proportion of patients (15% of patient candidate to be immediately transplanted under an IPSS-R-based policy would benefit from a delayed strategy by IPSS-M, whereas 19% of candidates to delayed transplantation by IPSS-R would benefit from immediate HSCT by IPSS-M), resulting in a significant gain-in-life expectancy under an IPSS-M-based policy (P 5.001). CONCLUSION These results provide evidence for the clinical relevance of including genomic features into the transplantation decision making process, allowing personalizing the hazards and effectiveness of HSCT in patients with MDS
The applications of artificial intelligence in chest imaging of COVID-19 patients: A literature review
Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an increase in the accuracy of exam interpretation and to the extraction of prognostic information useful in the decision-making process. Considering the ever expanding imaging data generated amid this pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease. In this context, many recent studies have explored the role of AI in each of the presumed applications for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest imaging can be a great asset for fast and precise disease screening, identification and characterization. However, various biases should be overcome in the development of further ML-based algorithms to give them sufficient robustness and reproducibility for their integration into clinical practice. As a result, in this literature review, we will focus on the application of AI in chest imaging, in particular, deep learning, radiomics and advanced imaging as quantitative CT
Generative Adversarial Networks in Brain Imaging: A Narrative Review
Artificial intelligence (AI) is expected to have a major effect on radiology as it demonstrated remarkable progress in many clinical tasks, mostly regarding the detection, segmentation, classification, monitoring, and prediction of diseases. Generative Adversarial Networks have been proposed as one of the most exciting applications of deep learning in radiology. GANs are a new approach to deep learning that leverages adversarial learning to tackle a wide array of computer vision challenges. Brain radiology was one of the first fields where GANs found their application. In neuroradiology, indeed, GANs open unexplored scenarios, allowing new processes such as image-to-image and cross-modality synthesis, image reconstruction, image segmentation, image synthesis, data augmentation, disease progression models, and brain decoding. In this narrative review, we will provide an introduction to GANs in brain imaging, discussing the clinical potential of GANs, future clinical applications, as well as pitfalls that radiologists should be aware of
A machine learning risk model based on preoperative CT scan to predict postoperative outcome after pancreatoduodenectomy: A pilot study
Artificial intelligence in colorectal surgery: an AI-powered systematic review
Artificial intelligence (AI) has the potential to revolutionize surgery in the coming years. Still, it is essential to clarify what the meaningful current applications are and what can be reasonably expected. This AI-powered review assessed the role of AI in colorectal surgery. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic search of PubMed, Embase, Scopus, Cochrane Library databases, and gray literature was conducted on all available articles on AI in colorectal surgery (from January 1 1997 to March 1 2021), aiming to define the perioperative applications of AI. Potentially eligible studies were identified using novel software powered by natural language processing (NLP) and machine learning (ML) technologies dedicated to systematic reviews. Out of 1238 articles identified, 115 were included in the final analysis. Available articles addressed the role of AI in several areas of interest. In the preoperative phase, AI can be used to define tailored treatment algorithms, support clinical decision-making, assess the risk of complications, and predict surgical outcomes and survival. Intraoperatively, AI-enhanced surgery and integration of AI in robotic platforms have been suggested. After surgery, AI can be implemented in the Enhanced Recovery after Surgery (ERAS) pathway. Additional areas of applications included the assessment of patient-reported outcomes, automated pathology assessment, and research. Available data on these aspects are limited, and AI in colorectal surgery is still in its infancy. However, the rapid evolution of technologies makes it likely that it will increasingly be incorporated into everyday practice
The added value of artificial intelligence to LI-RADS categorization: A systematic review
Purpose: The objective of this systematic review was to critically assess the available literature on deep learning (DL) and radiomics applied to the Liver Imaging Reporting and Data System (LI-RADS) in terms of 1) automatic LI-RADS classification of liver nodules; 2) the contribution of DL and radiomics to human evaluation in the classification of liver nodules following LI-RADS protocol. Materials and methods: A literature search was conducted to identify original research studies published up to April 2021. The inclusion criteria were: English language, focus on computed tomography (CT) and/or magnetic resonance (MR) with specified number of patients and lesions, adoption of LI-RADS classification for the detected hepatic lesions, and application of AI in the classification of liver nodules. Review articles, conference papers, editorials and commentaries, animal studies or studies with absence of AI and/or LI-RADS were excluded. After screening 221 articles, 11 studies were included in this review. Results: All the included studies proved that DL and radiomics have high performances in liver nodules classification, sometimes similar or better than human evaluation. The best performances of DL was an AUC of 0.95 on MR and the best performance of radiomics was AUC of 0.98 either on CT and MR, while the lower ones were respectively AUC of 0.63 either on CT and MR for DL and AUC of 0.70 on CT for radiomics. Conclusion: DL and radiomics could be a useful tool in assisting radiologists in the diagnosis and classification of liver nodules according to LI-RADS
