787 research outputs found

    Induced topological pressure for countable state Markov shifts

    Full text link
    We introduce the notion of induced topological pressure for countable state Markov shifts with respect to a non-negative scaling function and an arbitrary subset of finite words. Firstly, the scaling function allows a direct access to important thermodynamical quantities, which are usually given only implicitly by certain identities involving the classically defined pressure. In this context we generalise Savchenko's definition of entropy for special flows to a corresponding notion of topological pressure and show that this new notion coincides with the induced pressure for a large class of H\"older continuous height functions not necessarily bounded away from zero. Secondly, the dependence on the subset of words gives rise to interesting new results connecting the Gurevi{\vc} and the classical pressure with exhausting principles for a large class of Markov shifts. In this context we consider dynamical group extentions to demonstrate that our new approach provides a useful tool to characterise amenability of the underlying group structure.Comment: 28 page

    Re-entrant resonant tunneling

    Full text link
    We study the effect of electron-electron interactions on the resonant-tunneling spectroscopy of the localized states in a barrier. Using a simple model of three localized states, we show that, due to the Coulomb interactions, a single state can give rise to two resonant peaks in the conductance as a function of gate voltage, G(Vg). We also demonstrate that an additional higher-order resonance with Vg-position in between these two peaks becomes possibile when interactions are taken into account. The corresponding resonant-tunneling process involves two-electron transitions. We have observed both these effects in GaAs transistor microstructures by studying the time evolution of three adjacent G(Vg) peaks caused by fluctuating occupation of an isolated impurity (modulator). The heights of the two stronger peaks exibit in-phase fluctuations. The phase of fluctuations of the smaller middle peak is opposite. The two stronger peaks have their origin in the same localized state, and the third one corresponds to a co-tunneling process.Comment: 9 pages, REVTeX, 4 figure

    Hole-hole interaction in a strained Inx_xGa1x_{1-x}As two dimensional system

    Full text link
    The interaction correction to the conductivity of 2D hole gas in strained GaAs/Inx_xGa1x_{1-x}As/GaAs quantum well structures was studied. It is shown that the Zeeman splitting, spin relaxation and ballistic contribution should be taking into account for reliable determination of the Fermi-liquid constant F0σF_0^\sigma. The proper consideration of these effects allows us to describe both th temperature and magnetic field dependences of the conductivity and find the value of F0σF_0^\sigma.Comment: 7 pages, 6 figure

    A dynamic localization of 2D electrons at mesoscopic length scales

    Full text link
    We have investigated the local magneto-transport in high-quality 2D electron systems at low carrier densities. The positive magneto-resistance in perpendicular magnetic field in the strongly insulating regime has been measured to evaluate the spatial concentration of localized states within a mesoscopic region of the samples. An independent measurement of the electron density within the same region shows an unexpected correspondence between the density of electrons in the metallic regime and that of the localized states in the insulating phase. We have argued that this correspondence manifests a rigid distribution of electrons at low densities.Comment: 8 pages (incl 4 figures), double colum

    Renormalization of hole-hole interaction at decreasing Drude conductivity

    Full text link
    The diffusion contribution of the hole-hole interaction to the conductivity is analyzed in gated GaAs/Inx_xGa1x_{1-x}As/GaAs heterostructures. We show that the change of the interaction correction to the conductivity with the decreasing Drude conductivity results both from the compensation of the singlet and triplet channels and from the arising prefactor αi<1\alpha_i<1 in the conventional expression for the interaction correction.Comment: 6 pages, 5 figure

    Enhanced fluctuations of the tunneling density of states near bottoms of Landau bands measured by a local spectrometer

    Full text link
    We have found that the local density of states fluctuations (LDOSF) in a disordered metal, detected using an impurity in the barrier as a spectrometer, undergo enhanced (with respect to SdH and dHvA effects) oscillations in strong magnetic fields, omega _c\tau > 1. We attribute this to the dominant role of the states near bottoms of Landau bands which give the major contribution to the LDOSF and are most strongly affected by disorder. We also demonstrate that in intermediate fields the LDOSF increase with B in accordance with the results obtained in the diffusion approximation.Comment: 4 pages, 4 figure

    Hard-core Radius of Nucleons within the Induced Surface Tension Approach

    Full text link
    In this work we discuss a novel approach to model the hadronic and nuclear matter equations of state using the induced surface tension concept. Since the obtained equations of state, classical and quantum, are among the most successful ones in describing the properties of low density phases of strongly interacting matter, they set strong restrictions on the possible value of the hard-core radius of nucleons. Therefore, we perform a detailed analysis of its value which follows from hadronic and nuclear matter properties and find the most trustworthy range of its values: the hard-core radius of nucleons is 0.30--0.36 fm. A comparison with the phenomenology of neutron stars implies that the hard-core radius of nucleons has to be temperature and density dependent.Comment: 12 pages, 4 figures, references added, typos correcte

    Optically-stimulated desorption of 'hot' excimers from pre-irradiated Ar solids

    Get PDF
    Electronically-induced desorption from solid Ar pre-irradiated by a low-energy electron beam was investigated by activation spectroscopy methods - photon-stimulated exoelectron emission and photon-stimulated luminescence in combination with spectrally-resolved measurements in the VUV range of the spectrum. Desorption of vibrationally excited argon molecules Ar2^*(v) from the surface of pre-irradiated solid Ar was observed for the first time. It was shown that desorption of 'hot' Ar2^*(v) molecules is caused by recombination of self-trapped holes with electrons released from traps by visible range photons. The possibility of optical stimulation of the phenomenon is evidenced.Comment: The complete version of the paper will be published in Fiz. Nizk. Temp. (Low Temp. Phys.
    corecore