48 research outputs found
Molecular biology of glutathione peroxidase 4: from genomic structure to developmental expression and neural function
Selenoproteins have been recognized as modulators of brain function and signaling. Phospholipid hydroperoxide glutathione peroxidase (GPx4/PHGPx) is a unique member of the selenium-dependent glutathione peroxidases in mammals with a pivotal role in brain development and function. GPx4 exists as a cytosolic, mitochondrial, and nuclear isoform derived from a single gene. In mice, the GPx4 gene is located on chromosome 10 in close proximity to a functional retrotransposome that is expressed under the control of captured regulatory elements. Elucidation of crystallographic data uncovered structural peculiarities of GPx4 that provide the molecular basis for its unique enzymatic properties and substrate specificity. Monomeric GPx4 is multifunctional: it acts as a reducing enzyme of peroxidized phospholipids and thiols and as a structural protein. Transcriptional regulation of the different GPx4 isoforms requires several isoform-specific cis-regulatory sequences and trans-activating factors. Cytosolic and mitochondrial GPx4 are the major isoforms exclusively expressed by neurons in the developing brain. In stark contrast, following brain trauma, GPx4 is specifically upregulated in non-neuronal cells, i.e., reactive astrocytes. Molecular approaches to genetic modification in mice have revealed an essential and isoform-specific function for GPx4 in development and disease. Here we review recent findings on GPx4 with emphasis on its molecular structure and function and consider potential mechanisms that underlie neural development and neuropathological condition
Target- and Maturation-Specific Membrane-Associated Molecules Determine the Ingrowth of Entorhinal Fibers into the Hippocampus
AbstractIn this study the role of membrane-associated molecules involved in entorhinohippocampal pathfinding was examined. First outgrowth preferences of entorhinal neurites were analyzed on membrane carpets obtained from their proper target area, the hippocampus, and compared to preferences on control membranes from brain regions which do not receive afferent connections from the entorhinal cortex. On a substrate consisting of alternating lanes of hippocampal and control membranes, entorhinal neurites exhibited a strong tendency to grow on lanes of hippocampal membrane. These tissue-specific outgrowth preferences were maintained even on membrane preparations from adult brain tissue devoid of myelin. To determine the possible maturation dependence of these membranes, we examined guidance preferences of entorhinal neurites on hippocampal membranes of different developmental stages ranging from embryonic to postnatal and adult. Given a choice between alternating lanes of embryonic (E15–E16) and neonatal (P0–P1) hippocampal membranes, entorhinal neurites preferred to extend on neonatal membranes. No outgrowth preferences were observed on membranes obtained between E19 and P10. From P10 onward there was a reoccurrence of a preference for postnatal membrane lanes when neurites were presented with a choice between P15, P30, and adult membranes (>P60). This choice behavior of entorhinal neurites temporally correlates with the ingrowth of the perforant path into the hippocampus and with the stabilization of this brain area in vivo. Experiments in which postnatal and adult hippocampal membranes were heat inactivated or treated to remove molecules sensitive to phosphatidylinositol-specific phospholipase C demonstrated that entorhinal fiber preferences were controlled in this assay by attractive guidance cues and were independent of phosphatidylinositol-sensitive linked molecules. Moreover, entorhinal neurites displayed a positive discrimination for membrane-associated guidance cues of their target field, thus preferring to grow on membranes from the molecular layer of the dentate gyrus compared with CA3 or hilus membranes. Heat-inactivation experiments indicated that preferential growth of entorhinal axons is due to a specific attractivity of the molecular layer substrate. The data presented demonstrate that outgrowth of entorhinal fibers on hippocampal membranes is target and maturation dependent
The Acidic Brain—Glycolytic Switch in the Microenvironment of Malignant Glioma
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma
Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln
Identifying areas with high and low infection rates can provide important etiological clues. Usually, areas with high and low infection rates are identified by aggregating epidemiological data into geographical units, such as administrative areas. This assumes that the distribution of population numbers, infection rates, and resulting risks is constant across space. This assumption is, however, often false and is commonly known as the modifiable area unit problem. This article develops a spatial relative risk surface by using kernel density estimation to identify statistically significant areas of high risk by comparing the spatial distribution of address-level COVID-19 cases and the underlying population at risk in Berlin-Neukölln. Our findings show that there are varying areas of statistically significant high and low risk that straddle administrative boundaries. The findings of this exploratory analysis further highlight topics such as, e.g., Why were mostly affluent areas affected during the first wave? What lessons can be learned from areas with low infection rates? How important are built structures as drivers of COVID-19? How large is the effect of the socio-economic situation on COVID-19 infections? We conclude that it is of great importance to provide access to and analyse fine-resolution data to be able to understand the spread of the disease and address tailored health measures in urban settings.Deutsche ForschungsgemeinschaftPeer Reviewe
Chemical hybridization of sulfasalazine and dihydroartemisinin promotes brain tumor cell death
Gliomas are primary brain tumors with still poor prognosis for the patients despite a combination of cytoreduction via surgery followed by a radio-chemotherapy. One strategy to find effective treatment is to combine two different compounds in one hybrid molecule via linker to add to or at best potentiate their impact on malignant cells. Here, we report on the effects of a newly synthesized hybrid of sulfasalazine (SAS) and dihydroartemisinin (DHA), called AC254. In previous studies, both SAS and DHA have already proved to have anti-tumor properties themselves and to have sensitizing respectively potentiating effects on other treatments against malignant tumors. We investigated the impact of individual drugs SAS and DHA, their 1:1 combination and a novel SAS-DHA hybrid compound (AC254) on rodent and human glioma cells. In our study SAS alone showed no or only a mild effect on glioma, whereas DHA led to a significant reduction of cell viability in a dose-dependent manner. Next we compared the efficacy of the hybrid AC254 to the combinational treatment of its parent compounds SAS and DHA. The hybrid was highly efficient in combating glioma cells compared to single treatment strategies regarding cell viability and cell death. Interestingly, AC254 showed a remarkable advantage over the combinational treatment with both parent compounds in most used concentrations. In addition to its reduction of tumor cell viability and induction of cell death, the hybrid AC254 displayed changes in cell cycle and reduction of cell migration. Taken together, these results demonstrate that clinically established compounds such as SAS and DHA can be potentiated in their anti-cancer effects by chemical hybridization. Thus, this concept provides the opportunity to devise new effective chemotherapeutic agents
Comparative Analysis of Selenocysteine Machinery and Selenoproteome Gene Expression in Mouse Brain Identifies Neurons as Key Functional Sites of Selenium in Mammals
Although dietary selenium (Se) deficiency results in phenotypes associated with selenoprotein depletion in various organs, the brain is protected from Se loss. To address the basis for the critical role of Se in brain function, we carried out comparative gene expression analyses for the complete selenoproteome and associated biosynthetic factors. Using the Allen Brain Atlas, we evaluated 159 regions of adult mouse brain and provided experimental analyses of selected selenoproteins. All 24 selenoprotein mRNAs were expressed in the mouse brain. Most strikingly, neurons in olfactory bulb, hippocampus, cerebral cortex, and cerebellar cortex were exceptionally rich in selenoprotein gene expression, in particular in GPx4, SelK, SelM, SelW, and Sep15. Over half of the selenoprotein genes were also expressed in the choroid plexus. A unique expression pattern was observed for one of the highly expressed selenoprotein genes, SelP, which we suggest to provide neurons with Se. Cluster analysis of the expression data linked certain selenoproteins and selenocysteine machinery genes and suggested functional linkages among selenoproteins, such as that between SelM and Sep15. Overall, this study suggests that the main functions of selenium in mammals are confined to certain neurons in the brain
Comparative Analysis of Selenocysteine Machinery and Selenoproteome Gene Expression in Mouse Brain Identifies Neurons as Key Functional Sites of Selenium in Mammals
Although dietary selenium (Se) deficiency results in phenotypes associated with selenoprotein depletion in various organs, the brain is protected from Se loss. To address the basis for the critical role of Se in brain function, we carried out comparative gene expression analyses for the complete selenoproteome and associated biosynthetic factors. Using the Allen Brain Atlas, we evaluated 159 regions of adult mouse brain and provided experimental analyses of selected selenoproteins. All 24 selenoprotein mRNAs were expressed in the mouse brain. Most strikingly, neurons in olfactory bulb, hippocampus, cerebral cortex, and cerebellar cortex were exceptionally rich in selenoprotein gene expression, in particular in GPx4, SelK, SelM, SelW, and Sep15. Over half of the selenoprotein genes were also expressed in the choroid plexus. A unique expression pattern was observed for one of the highly expressed selenoprotein genes, SelP, which we suggest to provide neurons with Se. Cluster analysis of the expression data linked certain selenoproteins and selenocysteine machinery genes and suggested functional linkages among selenoproteins, such as that between SelM and Sep15. Overall, this study suggests that the main functions of selenium in mammals are confined to certain neurons in the brain
Glial Glutamate Transporter-Mediated Plasticity: System xc-/xCT/SLC7A11 and EAAT1/2 in Brain Diseases
Glial cells play an essential role in the complex function of the nervous system. In particular, astrocytes provide nutritive support for neuronal cells and are involved in regulating synaptic transmission. Oligodendrocytes ensheath axons and support information transfer over long distances. Microglial cells constitute part of the innate immune system in the brain. Glial cells are equipped with the glutamate-cystine-exchanger xCT (SLC7A11), the catalytic subunit of system x
c
−
, and the excitatory amino acid transporter 1 (EAAT1, GLAST) and EAAT2 (GLT-1). Thereby, glial cells maintain balanced extracellular glutamate levels that enable synaptic transmission and prevent excitotoxic states. Expression levels of these transporters, however, are not fixed. Instead, expression of glial glutamate transporters are highly regulated in reaction to the external situations. Interestingly, such regulation and homeostasis is lost in diseases such as glioma, (tumor-associated) epilepsy, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis or multiple sclerosis. Upregulation of system x
c
−
(xCT or SLC7A11) increases glutamate export from the cell, while a downregulation of EAATs decreases intracellular glutamate import. Occurring simultaneously, these reactions entail excitotoxicity and thus harm neuronal function. The release of glutamate via the antiporter system x
c
−
is accompanied by the import of cystine—an amino acid essential in the antioxidant glutathione. This homeostasis between excitotoxicity and intracellular antioxidant response is plastic and off-balance in central nervous system (CNS) diseases. System x
c
−
is highly expressed on glioma cells and sensitizes them to ferroptotic cell death. Hence, system x
c
−
is a potential target for chemotherapeutic add-on therapy. Recent research reveals a pivotal role of system x
c
−
and EAAT1/2 in tumor-associated and other types of epilepsy. Numerous studies show that in Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s disease, these glutamate transporters are dysregulated—and disease mechanisms could be interposed by targeting system x
c
−
and EAAT1/2. Interestingly, in neuroinflammatory diseases such as multiple sclerosis, there is growing evidence for glutamate transporter involvement. Here, we propose that the current knowledge strongly suggest a benefit from rebalancing glial transporters during treatment
Therapeutic Potential of Selenium in Glioblastoma
Little progress has been made in the long-term management of malignant brain tumors, leaving patients with glioblastoma, unfortunately, with a fatal prognosis. Glioblastoma remains the most aggressive primary brain cancer in adults. Similar to other cancers, glioblastoma undergoes a cellular metabolic reprogramming to form an oxidative tumor microenvironment, thereby fostering proliferation, angiogenesis and tumor cell survival. Latest investigations revealed that micronutrients, such as selenium, may have positive effects in glioblastoma treatment, providing promising chances regarding the current limitations in surgical treatment and radiochemotherapy outcomes. Selenium is an essential micronutrient with anti-oxidative and anti-cancer properties. There is additional evidence of Se deficiency in patients suffering from brain malignancies, which increases its importance as a therapeutic option for glioblastoma therapy. It is well known that selenium, through selenoproteins, modulates metabolic pathways and regulates redox homeostasis. Therefore, selenium impacts on the interaction in the tumor microenvironment between tumor cells, tumor-associated cells and immune cells. In this review we take a closer look at the current knowledge about the potential of selenium on glioblastoma, by focusing on brain edema, glioma-related angiogenesis, and cells in tumor microenvironment such as glioma-associated microglia/macrophages