700 research outputs found

    Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign

    Get PDF
    Mixing ratios of the atmospheric nitrogen oxides NO and NO2 were measured as part of the OPALE (Oxidant Production in Antarctic Lands & Export) campaign at Dome C, East Antarctica (75.1 degrees S, 123.3 degrees E, 3233 m), during December 2011 to January 2012. Profiles of NOx mixing ratios of the lower 100m of the atmosphere confirm that, in contrast to the South Pole, air chemistry at Dome C is strongly influenced by large diurnal cycles in solar irradiance and a sudden collapse of the atmospheric boundary layer in the early evening. Depth profiles of mixing ratios in firn air suggest that the upper snowpack at Dome C holds a significant reservoir of photolytically produced NO2 and is a sink of gas-phase ozone (O-3). First-time observations of bromine oxide (BrO) at Dome C show that mixing ratios of BrO near the ground are low, certainly less than 5 pptv, with higher levels in the free troposphere. Assuming steady state, observed mixing ratios of BrO and RO2 radicals are too low to explain the large NO2 : NO ratios found in ambient air, possibly indicating the existence of an unknown process contributing to the atmospheric chemistry of reactive nitrogen above the Antarctic Plateau. During 2011-2012, NOx mixing ratios and flux were larger than in 2009-2010, consistent with also larger surface O-3 mixing ratios resulting from increased net O-3 production. Large NOx mixing ratios at Dome C arise from a combination of continuous sunlight, shallow mixing height and significant NOx emissions by surface snow (F-NOx). During 23 December 2011-12 January 2012, median F-NOx was twice that during the same period in 20092010 due to significantly larger atmospheric turbulence and a slightly stronger snowpack source. A tripling of F-NOx in December 2011 was largely due to changes in snowpack source strength caused primarily by changes in NO3- concentrations in the snow skin layer, and only to a secondary order by decrease of total column O-3 and associated increase in NO3- photolysis rates. A source of uncertainty in model estimates of F-NOx is the quantum yield of NO3- photolysis in natural snow, which may change over time as the snow ages

    Impact of Preindustrial Biomass-Burning Emissions on the Oxidation Pathways of Tropospheric Sulfur and Nitrogen

    Get PDF
    Ice core measurements (H2O2 and CH4/HCHO) and modeling studies indicate a change in the oxidation capacity of the atmosphere since the onset of the Industrial Revolution due to increases in fossil fuel burning emissions [e. g., Lelieveld et al., 2002; Hauglustaine and Brasseur, 2001; Wang and Jacob, 1998; Staffelbach et al., 1991]. The mass-independent fractionation (MIF) in the oxygen isotopes of sulfate and nitrate from a Greenland ice core reveal that biomass-burning events in North America just prior to the Industrial Revolution significantly impacted the oxidation pathways of sulfur and nitrogen species deposited in Greenland ice. This finding highlights the importance of biomass-burning emissions for atmospheric chemistry in preindustrial North America and warrants the inclusion of this impact in modeling studies estimating changes in atmospheric oxidant chemistry since the Industrial Revolution, particularly when using paleo-oxidant data as a reference for model evaluation

    Air-snow transfer of nitrate on the East Antarctic plateau – Part 2: An isotopic model for the interpretation of deep ice-core records

    Get PDF
    Unraveling the modern budget of reactive nitrogen on the Antarctic plateau is critical for the interpretation of ice core records of nitrate. This requires accounting for nitrate recycling processes occurring in near surface snow and the overlying atmospheric boundary layer. Not only concentration measurements, but also isotopic ratios of nitrogen and oxygen in nitrate, provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modelling is required to test hypotheses in a~quantitative manner. Here we introduce the model "TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow" (TRANSITS), a~novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air–snow interface on the East Antarctic plateau, in terms of concentrations (mass fraction) and the nitrogen (δ15N) and oxygen isotopic composition (17O}-excess, Δ17O) in nitrate. At the air–snow interface at Dome C (DC, 75°06' S, 123°19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow including the observed extraordinary high positive values (around +300 ‰) below 20 \unit{cm}. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air–snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by a~few~‰. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15ϵapp, 17Eapp) to the snow accumulation rate. Building on this development, we propose a~framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions and δ15N in the nitrate archived in an ice core, may be used to derive information about past variations in the total ozone column and/or the primary inputs of nitrate above Antarctica as well as in nitrate trapping efficiency (defined as the ratio between the archived nitrate flux and the primary nitrate input flux). The Δ17O of nitrate could then be corrected from the impact of cage recombination effects associated with the photolysis of nitrate in snow. Past changes in the relative contributions of the Δ17O in the primary inputs of nitrate and the Δ17O in the locally cycled NO2 could then be determined. Therefore, information about the past variations in the local and long range processes operating on reactive nitrogen species could be obtained from ice cores collected in low accumulation regions such as the Antarctic plateau

    Variability of sulfate signal in ice core records based on five replicate cores

    No full text
    International audienceCurrent volcanic reconstructions based on ice core analysis have significantly improved over the past few decades by incorporating multiple-core analyses with a high temporal resolution from different parts of the polar regions into a composite common volcanic eruption record. Regional patterns of volcanic deposition are based on composite records, built from cores taken at both poles. However, in many cases only a single record at a given site is used for these reconstructions. This assumes that transport and regional meteorological patterns are the only source of the dispersion of the volcanic products. Here we evaluate the local-scale variability of a sulfate profile in a low-accumulation site (Dome C, Antarctica), in order to assess the representativeness of one core for such a reconstruction. We evaluate the variability with depth, statistical occurrence, and sulfate flux deposition variability of volcanic eruptions detected in five ice cores, drilled 1 m apart from each other. Local-scale variability, essentially attributed to snow drift and surface roughness at Dome C, can lead to a non-exhaustive record of volcanic events when a single core is used as the site reference , with a bulk probability of 30 % of missing volcanic events and close to 65 % uncertainty on one volcanic flux measurement (based on the standard deviation obtained from a five-core comparison). Averaging n records reduces the uncertainty of the deposited flux mean significantly (by a factor 1/ √ n); in the case of five cores, the uncertainty of the mean flux can therefore be reduced to 29 %

    Nitrogen and oxygen isotope constraints on the origin of atmospheric nitrate in coastal Antarctica

    Get PDF
    Throughout the year 2001, aerosol samples were collected continuously for 10 to 15 days at the French Antarctic Station Dumont d&apos;Urville (DDU) (66&deg;40&apos; S, l40&deg;0&apos; E, 40 m above mean sea level). The nitrogen and oxygen isotopic ratios of particulate nitrate at DDU exhibit seasonal variations that are among the most extreme observed for nitrate on Earth. In association with concentration measurements, the isotope ratios delineate four distinct periods, broadly consistent with previous studies on Antarctic coastal areas. During austral autumn and early winter (March to mid-July), nitrate concentrations attain a minimum between 10 and 30 ng m<sup>&minus;3</sup> (referred to as Period 2). Two local maxima in August (55 ng m<sup>&minus;3</sup>) and November/December (165 ng m<sup>&minus;3</sup>) are used to assign Period 3 (mid-July to September) and Period 4 (October to December). Period 1 (January to March) is a transition period between the maximum concentration of Period 4 and the background concentration of Period 2. These seasonal changes are reflected in changes of the nitrogen and oxygen isotope ratios. During Period 2, which is characterized by background concentrations, the isotope ratios are in the range of previous measurements at mid-latitudes: &delta;<sup>18</sup>O<sub>vsmow</sub>=(77.2&plusmn;8.6)&permil;; &Delta;<sup>17</sup>O=(29.8&plusmn;4.4)&permil;; &delta;<sup>15</sup>N<sub>air</sub>=(&minus;4.4&plusmn;5.4)&permil; (mean &plusmn; one standard deviation). Period 3 is accompanied by a significant increase of the oxygen isotope ratios and a small increase of the nitrogen isotope ratio to &delta;<sup>18</sup>O<sub>vsmow</sub>=(98.8&plusmn;13.9)&permil;; &Delta;<sup>17</sup>O=(38.8&plusmn;4.7)&permil; and &delta;<sup>15</sup>N<sub>air</sub>=(4.3&plusmn;8.20&permil;). Period 4 is characterized by a minimum <sup>15</sup>N/<sup>14</sup>N ratio, only matched by one prior study of Antarctic aerosols, and oxygen isotope ratios similar to Period 2: &delta;<sup>18</sup>O<sub>vsmow</sub>=(77.2&plusmn;7.7)&permil;; &Delta;<sup>17</sup>O=(31.1&plusmn;3.2)&permil;; &delta;<sup>15</sup>N<sub>air</sub>=(&minus;32.7&plusmn;8.4)&permil;. Finally, during Period 1, isotope ratios reach minimum values for oxygen and intermediate values for nitrogen: &delta;<sup>18</sup>O<sub>vsmow</sub>=63.2&plusmn;2.5&permil;; &Delta;<sup>17</sup>O=24.0&plusmn;1.1&permil;; &delta;<sup>15</sup>N<sub>air</sub>=&minus;17.9&plusmn;4.0&permil;). Based on the measured isotopic composition, known atmospheric transport patterns and the current understanding of kinetics and isotope effects of relevant atmospheric chemical processes, we suggest that elevated tropospheric nitrate levels during Period 3 are most likely the result of nitrate sedimentation from polar stratospheric clouds (PSCs), whereas elevated nitrate levels during Period 4 are likely to result from snow re-emission of nitrogen oxide species. We are unable to attribute the source of the nitrate during periods 1 and 2 to local production or long-range transport, but note that the oxygen isotopic composition is in agreement with day and night time nitrate chemistry driven by the diurnal solar cycle. A precise quantification is difficult, due to our insufficient knowledge of isotope fractionation during the reactions leading to nitrate formation, among other reasons

    Diagnosis and outcome of oesophageal Crohn's disease

    Get PDF
    BACKGROUND AND AIMS: Crohn's disease (CD) can involve any part of the gastrointestinal tract. We aimed to characterize clinical, endoscopic, histologic features and treatment outcomes of CD patients with oesophageal involvement. METHODS: We collected cases through a retrospective multicentre European Crohn's and Colitis Organisation CONFER [COllaborative Network For Exceptionally Rare case reports] project. Clinical data were recorded in a standardized case report form. RESULTS: A total of 40 patients were reported [22 males, mean (±SD, range) age at oesophageal CD diagnosis: 25 (±13.3, 10-71) years and mean time of follow-up: 67 (±68.1, 3-240) months]. Oesophageal involvement was established at CD diagnosis in 26 patients (65%) and during follow-up in 14. CD was exclusively located in the oesophagus in 2 patients. Thirteen patients (32.2%) were asymptomatic at oesophageal disease diagnosis. Oesophageal strictures were present in 5 patients and fistulizing oesophageal disease in one. Eight patients exhibited granulomas on biopsies. Proton-pump inhibitors (PPIs) were administered in 37 patients (92.5%). Three patients underwent endoscopic dilation for symptomatic strictures and none oesophageal-related surgery. Diagnosis in pre-established CD resulted in treatment modifications in 9/14 patients. Clinical remission of oesophageal disease was seen in 33/40 patients (82.5%) after a mean time of 7 (±5.6, 1-18) months. Follow-up endoscopy was performed in 29/40 patients and 26/29 (89.7%) achieved mucosal healing. CONCLUSION: In this case series the endoscopic and histologic characteristics of isolated oesophageal CD were similar to those reported in other sites of involvement. Treatment was primarily conservative, with PPIs administered in the majority of patients and modifications in pre-existing IBD-related therapy occurring in two thirds of them. Clinical and endoscopic remission was achieved in more than 80% of the patients.info:eu-repo/semantics/publishedVersio

    EoE CONNECT, the European Registry of Clinical, Environmental, and Genetic Determinants in Eosinophilic Esophagitis: rationale, design, and study protocol of a large-scale epidemiological study in Europe

    Get PDF
    Best practice analysis; Clinical practice patterns; Eosinophilic esophagitisAnálisis de las mejores prácticas; Patrones de práctica clínica; Esofagitis eosinofílicaAnàlisi de les millors pràctiques; Patrons de pràctica clínica; Esofagitis eosinofílicaBackground: The growing prevalence of eosinophilic esophagitis (EoE) represents a considerable burden to patients and health care systems. Optimizing cost-effective management and identifying mechanisms for disease onset and progression are required. However, the paucity of large patient cohorts and heterogeneity of practice hinder the defining of optimal management of EoE. Methods: EoE CONNECT is an ongoing, prospective registry study initiated in 2016 and currently managed by EUREOS, the European Consortium for Eosinophilic Diseases of the Gastrointestinal Tract. Patients are managed and treated by their responsible specialists independently. Data recorded using a web-based system include demographic and clinical variables; patient allergies; environmental, intrapartum, and early life exposures; and family background. Symptoms are structurally assessed at every visit; endoscopic features and histological findings are recorded for each examination. Prospective treatment data are registered sequentially, with new sequences created each time a different treatment (active principle, formulation, or dose) is administered to a patient. EoE CONNECT database is actively monitored to ensure the highest data accuracy and the highest scientific and ethical standards. Results: EoE CONNECT is currently being conducted at 39 centers in Europe and enrolls patients of all ages with EoE. In its aim to increase knowledge, to date EoE CONNECT has provided evidence on the effectiveness of first- and second-line therapies for EoE in clinical practice, the ability of proton pump inhibitors to induce disease remission, and factors associated with improved response. Drug effects to reverse fibrous remodeling and endoscopic features of fibrosis in EoE have also been assessed. Conclusion: This prospective registry study will provide important information on the epidemiological and clinical aspects of EoE and evidence as to the real-world and long-term effectiveness and safety of therapy. These data will potentially be a vital benchmark for planning future EoE health care services in Europe.The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The establishment and design of the EoE CONNECT registry was developed with a grant from the United European Gastroenterology through the National Societies Link Award program. The maintenance of the database is financed by EUREOS (European Society of Eosinophilic Oesophagitis). Funding agencies had no role in the study design, in the writing of this manuscript, or the decision to submit for publication

    Crystallization and preliminary X-ray diffraction analyses of several forms of the CfaB major subunit of enterotoxigenic Escherichia coli CFA/I fimbriae

    Get PDF
    Three fusion proteins were generated in order to resolve the atomic structure of the CFA/I fimbriae of enterotoxigenic E. coli. CfaEB is a fusion of the minor and major CFA/I subunits, while CfaBB and CfaBBB are tandem fusions of two and three repeats, respectively, of the major subunit. Each protein was crystallized and the crystal structures of each of these fusions were determined successively by the molecular-replacement method using the CfaE crystal structure as an initial phasing model
    • …
    corecore