13,041 research outputs found
Laboratory determination of the luminous efficiency of meteor constituents
A crossed beam apparatus has been used to measure the emission and ionization cross sections for the prominent spectral features of Na, Ca, Mg, and Fe in collisions with N2 and O2 over the velocity range of 30 to 120 km/s. From the emission and ionization cross sections, the absolute luminous efficiencies in air were determined over the range of meteor velocities. The maximum luminous efficiencies for the brightest features were: greater than 1 percent for the Na D-lines, 0.2 percent for the Ca I(2) singlet, 0.06 percent for the Mg I(2) and Mg I(3) triplets, and 0.4 percent for Fe over the visible spectral range. These luminous efficiencies are valid for free molecular flow conditions for velocities above about 30 km/s and are directly applicable to spectroscopic observations of faint meteors. In contrast to previous work, the luminous efficiency found for stone in the present investigation decreased with velocity above about 50 km/s
Loading atom lasers by collectivity-enhanced optical pumping
The effect of collectivity on the loading of an atom laser via optical
pumping is discussed. In our model, atoms in a beam are laser-excited and
subsequently spontaneously decay into a trapping state. We consider the case of
sufficiently high particle density in the beam such that the spontaneous
emission is modified by the particle interaction. We show that the collective
effects lead to a better population of the trapping state over a wide range of
system parameters, and that the second order correlation function of the atoms
can be controlled by the applied laser field.Comment: 5 pages, 7 figure
Reliability model for planetary gear
A reliability model is presented for planetary gear trains in which the ring gear is fixed, the Sun gear is the input, and the planet arm is the output. The input and output shafts are coaxial and the input and output torques are assumed to be coaxial with these shafts. Thrust and side loading are neglected. This type of gear train is commonly used in main rotor transmissions for helicopters and in other applications which require high reductions in speed. The reliability model is based on the Weibull distribution of the individual reliabilities of the transmission components. The transmission's basic dynamic capacity is defined as the input torque which may be applied for one million input rotations of the Sun gear. Load and life are related by a power law. The load life exponent and basic dynamic capacity are developed as functions of the component capacities
Two-Baryon Systems with Twisted Boundary Conditions
We explore the use of twisted boundary conditions in extracting the nucleon
mass and the binding energy of two-baryon systems, such as the deuteron, from
Lattice QCD calculations. Averaging the results of calculations performed with
periodic and anti-periodic boundary conditions imposed upon the light-quark
fields, or other pair-wise averages, improves the volume dependence of the
deuteron binding energy from ~exp(-kappa*L)/L to ~exp(-sqrt(2)kappa*L)/L.
However, a twist angle of pi/2 in each of the spatial directions improves the
volume dependence from ~exp(-kappa*L)/L to ~exp(-2kappa*L)/L. Twist averaging
the binding energy with a random sampling of twist angles improves the volume
dependence from ~exp^(-kappa*L)/L to ~exp(-2kappa*L)/L, but with a standard
deviation of ~exp(-kappa*L)/L, introducing a signal-to-noise issue in modest
lattice volumes. Using the experimentally determined phase shifts and mixing
angles, we determine the expected energies of the deuteron states over a range
of cubic lattice volumes for a selection of twisted boundary conditions.Comment: 20 pages, 3 figure
Stability of continuously pumped atom lasers
A multimode model of a continuously pumped atom laser is shown to be unstable
below a critical value of the scattering length. Above the critical scattering
length, the atom laser reaches a steady state, the stability of which increases
with pumping. Below this limit the laser does not reach a steady state. This
instability results from the competition between gain and loss for the excited
states of the lasing mode. It will determine a fundamental limit for the
linewidth of an atom laser beam.Comment: 4 page
Angle of Repose and Angle of Marginal Stability: Molecular Dyanmics of Granular Particles
We present an implementation of realistic static friction in molecular
dynamics (MD) simulations of granular particles. In our model, to break
contacts between two particles, one has to apply a finite amount of force,
determined by the Coulomb criterion. Using a two dimensional model, we show
that piles generated by avalanches have a {\it finite} angle of repose
(finite slopes). Furthermore, these piles are stable under tilting
by an angle smaller than a non-zero tilting angle , showing that
is different from the angle of marginal stability ,
which is the maximum angle of stable piles. These measured angles are compared
to a theoretical approximation. We also measure by continuously
adding particles on the top of a stable pile.Comment: 14 pages, Plain Te
Nucleon-Nucleon Scattering in a Harmonic Potential
The discrete energy-eigenvalues of two nucleons interacting with a
finite-range nuclear force and confined to a harmonic potential are used to
numerically reconstruct the free-space scattering phase shifts. The extracted
phase shifts are compared to those obtained from the exact continuum scattering
solution and agree within the uncertainties of the calculations. Our results
suggest that it might be possible to determine the amplitudes for the
scattering of complex systems, such as n-d, n-t or n-alpha, from the
energy-eigenvalues confined to finite volumes using ab-initio bound-state
techniques.Comment: 19 pages, 13 figure
Spitzer IRAC Imaging of the Relativistic Jet from Superluminal Quasar PKS 0637-752
Emission from the relativistic jet located at hundreds of kpc from the core
of the superluminal quasar PKS 0637-752 was detected at 3.6 and 5.8 microns
with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. The
unprecedented sensitivity and arcsecond resolution of IRAC allows us to explore
the mid-infrared emission from kiloparsec-scale quasar jets for the first time.
The mid-infrared flux from the jet knots, when combined with radio and optical
fluxes, confirms a synchrotron origin of the radio-to-optical emission and
constrains very well the high energy end of the nonthermal electron
distribution. Assuming the X-rays are produced in the relativistically moving
knots via inverse Compton scattering of cosmic microwave background (CMB)
radiation, the infrared observation puts constraints on the matter content of
the quasar extended jet. Specifically, pure electron-positoron pair jet models
are unfavorable based on the lack of an infrared bump associated with ``bulk
Comptonization'' of CMB photons by an ultrarelativistic jet.Comment: 4 pages, 3 figures; accepted for publication in ApJ Letter
Heap Formation in Granular Media
Using molecular dynamics (MD) simulations, we find the formation of heaps in
a system of granular particles contained in a box with oscillating bottom and
fixed sidewalls. The simulation includes the effect of static friction, which
is found to be crucial in maintaining a stable heap. We also find another
mechanism for heap formation in systems under constant vertical shear. In both
systems, heaps are formed due to a net downward shear by the sidewalls. We
discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9
- …