13,041 research outputs found

    Laboratory determination of the luminous efficiency of meteor constituents

    Get PDF
    A crossed beam apparatus has been used to measure the emission and ionization cross sections for the prominent spectral features of Na, Ca, Mg, and Fe in collisions with N2 and O2 over the velocity range of 30 to 120 km/s. From the emission and ionization cross sections, the absolute luminous efficiencies in air were determined over the range of meteor velocities. The maximum luminous efficiencies for the brightest features were: greater than 1 percent for the Na D-lines, 0.2 percent for the Ca I(2) singlet, 0.06 percent for the Mg I(2) and Mg I(3) triplets, and 0.4 percent for Fe over the visible spectral range. These luminous efficiencies are valid for free molecular flow conditions for velocities above about 30 km/s and are directly applicable to spectroscopic observations of faint meteors. In contrast to previous work, the luminous efficiency found for stone in the present investigation decreased with velocity above about 50 km/s

    Loading atom lasers by collectivity-enhanced optical pumping

    Full text link
    The effect of collectivity on the loading of an atom laser via optical pumping is discussed. In our model, atoms in a beam are laser-excited and subsequently spontaneously decay into a trapping state. We consider the case of sufficiently high particle density in the beam such that the spontaneous emission is modified by the particle interaction. We show that the collective effects lead to a better population of the trapping state over a wide range of system parameters, and that the second order correlation function of the atoms can be controlled by the applied laser field.Comment: 5 pages, 7 figure

    Reliability model for planetary gear

    Get PDF
    A reliability model is presented for planetary gear trains in which the ring gear is fixed, the Sun gear is the input, and the planet arm is the output. The input and output shafts are coaxial and the input and output torques are assumed to be coaxial with these shafts. Thrust and side loading are neglected. This type of gear train is commonly used in main rotor transmissions for helicopters and in other applications which require high reductions in speed. The reliability model is based on the Weibull distribution of the individual reliabilities of the transmission components. The transmission's basic dynamic capacity is defined as the input torque which may be applied for one million input rotations of the Sun gear. Load and life are related by a power law. The load life exponent and basic dynamic capacity are developed as functions of the component capacities

    Two-Baryon Systems with Twisted Boundary Conditions

    Get PDF
    We explore the use of twisted boundary conditions in extracting the nucleon mass and the binding energy of two-baryon systems, such as the deuteron, from Lattice QCD calculations. Averaging the results of calculations performed with periodic and anti-periodic boundary conditions imposed upon the light-quark fields, or other pair-wise averages, improves the volume dependence of the deuteron binding energy from ~exp(-kappa*L)/L to ~exp(-sqrt(2)kappa*L)/L. However, a twist angle of pi/2 in each of the spatial directions improves the volume dependence from ~exp(-kappa*L)/L to ~exp(-2kappa*L)/L. Twist averaging the binding energy with a random sampling of twist angles improves the volume dependence from ~exp^(-kappa*L)/L to ~exp(-2kappa*L)/L, but with a standard deviation of ~exp(-kappa*L)/L, introducing a signal-to-noise issue in modest lattice volumes. Using the experimentally determined phase shifts and mixing angles, we determine the expected energies of the deuteron states over a range of cubic lattice volumes for a selection of twisted boundary conditions.Comment: 20 pages, 3 figure

    Stability of continuously pumped atom lasers

    Get PDF
    A multimode model of a continuously pumped atom laser is shown to be unstable below a critical value of the scattering length. Above the critical scattering length, the atom laser reaches a steady state, the stability of which increases with pumping. Below this limit the laser does not reach a steady state. This instability results from the competition between gain and loss for the excited states of the lasing mode. It will determine a fundamental limit for the linewidth of an atom laser beam.Comment: 4 page

    Angle of Repose and Angle of Marginal Stability: Molecular Dyanmics of Granular Particles

    Full text link
    We present an implementation of realistic static friction in molecular dynamics (MD) simulations of granular particles. In our model, to break contacts between two particles, one has to apply a finite amount of force, determined by the Coulomb criterion. Using a two dimensional model, we show that piles generated by avalanches have a {\it finite} angle of repose θR\theta_R (finite slopes). Furthermore, these piles are stable under tilting by an angle smaller than a non-zero tilting angle θT\theta_T, showing that θR\theta_R is different from the angle of marginal stability θMS\theta_{MS}, which is the maximum angle of stable piles. These measured angles are compared to a theoretical approximation. We also measure θMS\theta_{MS} by continuously adding particles on the top of a stable pile.Comment: 14 pages, Plain Te

    Nucleon-Nucleon Scattering in a Harmonic Potential

    Full text link
    The discrete energy-eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted phase shifts are compared to those obtained from the exact continuum scattering solution and agree within the uncertainties of the calculations. Our results suggest that it might be possible to determine the amplitudes for the scattering of complex systems, such as n-d, n-t or n-alpha, from the energy-eigenvalues confined to finite volumes using ab-initio bound-state techniques.Comment: 19 pages, 13 figure

    Spitzer IRAC Imaging of the Relativistic Jet from Superluminal Quasar PKS 0637-752

    Full text link
    Emission from the relativistic jet located at hundreds of kpc from the core of the superluminal quasar PKS 0637-752 was detected at 3.6 and 5.8 microns with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. The unprecedented sensitivity and arcsecond resolution of IRAC allows us to explore the mid-infrared emission from kiloparsec-scale quasar jets for the first time. The mid-infrared flux from the jet knots, when combined with radio and optical fluxes, confirms a synchrotron origin of the radio-to-optical emission and constrains very well the high energy end of the nonthermal electron distribution. Assuming the X-rays are produced in the relativistically moving knots via inverse Compton scattering of cosmic microwave background (CMB) radiation, the infrared observation puts constraints on the matter content of the quasar extended jet. Specifically, pure electron-positoron pair jet models are unfavorable based on the lack of an infrared bump associated with ``bulk Comptonization'' of CMB photons by an ultrarelativistic jet.Comment: 4 pages, 3 figures; accepted for publication in ApJ Letter

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9
    • …
    corecore