970 research outputs found

    Angle of repose and segregation in cohesive granular matter

    Full text link
    We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid is small and it forms liquid bridges between particles, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two dimensional silo through the transparent glass side walls. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid.Comment: 9 pages, 12 figure

    Magnetic resonance imaging for the differentiation of neoplastic, inflammatory, and cerebrovascular brain disease in dogs

    Get PDF
    BACKGROUND: The reliability and validity of magnetic resonance imaging (MRI) for detecting neoplastic, inflammatory, and cerebrovascular brain lesions in dogs are unknown. OBJECTIVES: To estimate sensitivity, specificity, and inter-rater agreement of MRI for classifying histologically confirmed neoplastic, inflammatory, and cerebrovascular brain disease in dogs. ANIMALS: One hundred and twenty-one client-owned dogs diagnosed with brain disease (n = 77) or idiopathic epilepsy (n = 44). METHODS: Retrospective, multi-institutional case series; 3 investigators analyzed MR images for the presence of a brain lesion with and without knowledge of case clinical data. Investigators recorded most likely etiologic category (neoplastic, inflammatory, cerebrovascular) and most likely specific disease for all brain lesions. Sensitivity, specificity, and inter-rater agreement were calculated to estimate diagnostic performance. RESULTS: MRI was 94.4% sensitive (95% confidence interval [CI] = 88.7, 97.4) and 95.5% specific (95% CI = 89.9, 98.1) for detecting a brain lesion with similarly high performance for classifying neoplastic and inflammatory disease, but was only 38.9% sensitive for classifying cerebrovascular disease (95% CI = 16.1, 67.0). In general, high specificity but not sensitivity was retained for MR diagnosis of specific brain diseases. Inter-rater agreement was very good for overall detection of structural brain lesions (j = 0.895, 95% CI = 0.792, 0.998, P < .001) and neoplastic lesions, but was only fair for cerebrovascular lesions (j = 0.299, 95% CI = 0, 0.761, P = .21). CONCLUSIONS AND CLINICAL IMPORTANCE: MRI is sensitive and specific for identifying brain lesions and classifying disease as inflammatory or neoplastic in dogs. Cerebrovascular disease in general and specific inflammatory, neoplastic, and cerebrovascular brain diseases were frequently misclassified.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1939-1676ab201

    Evaluation of standard magnetic resonance characteristics used to differentiate neoplastic, inflammatory, and vascular brain lesions in dogs

    Get PDF
    Magnetic resonance (MR) imaging characteristics are commonly used to help predict intracranial disease categories in dogs, however, few large studies have objectively evaluated these characteristics. The purpose of this retrospective study was to evaluate MR characteristics that have been used to differentiate neoplastic, inflammatory, and vascular intracranial diseases in a large, multi-institutional population of dogs. Medical records from three veterinary teaching hospitals were searched over a 6-year period for dogs that had diagnostic quality brain MR scans and histologically confirmed intracranial disease. Three examiners who were unaware of histologic diagnosis independently evaluated 19 MR lesion characteristics totaling 57 possible responses. A total of 75 dogs with histologically confirmed intracranial disease were included in analyses: 51 with neoplasia, 18 with inflammatory disease, and six with cerebrovascular disease. Only strong contrast enhancement was more common in neoplasia than other disease categories. A multivariable statistical model suggested that extra-axial origin, T2-FLAIR mixed intensity, and defined lesion margins were also predictive of neoplasia. Meningeal enhancement, irregular lesion shape, and multifocal location distinguished inflammatory diseases from the other disease categories. No MR characteristics distinguished vascular lesions and these appeared most similar to neoplasia. These results differed from a previous report describing seven MR characteristics that were predictive of neoplasia in dogs and cats. Findings from the current study indicated that the high performance of MR for diagnosing canine intracranial diseases might be due to evaluator recognition of combinations of MR characteristics vs. relying on any one MR characteristic alone.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1740-8261hb201

    The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package

    Get PDF
    The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project

    Lung transplantation for pulmonary fibrosis in dyskeratosis congenita: Case Report and systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyskeratosis congenita (DC) is a progressive, multi-system, inherited disorder of telomere biology with high risks of morbidity and mortality from bone marrow failure, hematologic malignancy, solid tumors and pulmonary fibrosis. Hematopoietic stem cell transplantation (HSCT) can cure the bone marrow failure, but it does not eliminate the risks of other complications, for which life-long surveillance is required. Pulmonary fibrosis is a progressive and lethal complication of DC.</p> <p>Case presentation</p> <p>In this report, we describe a patient with DC who developed pulmonary fibrosis seven years after HSCT for severe aplastic anemia, and was successfully treated with bilateral lung transplantation. We also performed a systematic literature review to understand the burden of pulmonary disease in patients with DC who did or did not receive an HSCT. Including our patient, we identified 49 DC patients with pulmonary disease (12 after HSCT and 37 without HSCT), and 509 with no reported pulmonary complications.</p> <p>Conclusion</p> <p>Our current case and literature review indicate that pulmonary morbidity is one of the major contributors to poor quality of life and reduced long-term survival in DC. We suggest that lung transplantation be considered for patients with DC who develop pulmonary fibrosis with no concurrent evidence of multi-organ failure.</p

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    First upper limits from LIGO on gravitational wave bursts

    Get PDF
    We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h_{rss}; typical sensitivities lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos and updated a few reference

    Searching for gravitational waves from known pulsars

    Get PDF
    We present upper limits on the amplitude of gravitational waves from 28 isolated pulsars using data from the second science run of LIGO. The results are also expressed as a constraint on the pulsars' equatorial ellipticities. We discuss a new way of presenting such ellipticity upper limits that takes account of the uncertainties of the pulsar moment of inertia. We also extend our previous method to search for known pulsars in binary systems, of which there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
    corecore