3,414 research outputs found

    Decomposition process in a FeAuPd alloy nanostructured by severe plastic deformation

    Full text link
    The decomposition process mechanisms have been investigated in a Fe50Au25Pd25 (at.%) alloy processed by severe plastic deformation. Phases were characterized by X-ray diffraction and microstructures were observed using transmission electron microscopy. In the coarse grain alloy homogenized and aged at 450circC450 ^{circ}\mathrm{C}, the bcc \alpha-Fe and fcc AuPd phases nucleate in the fcc supersaturated solid solution and grow by a discontinuous precipitation process resulting in a typical lamellar structure. The grain size of the homogenized FeAuPd alloy was reduced in a range of 50 to 100nm by high pressure torsion. Aging at 450circC450 ^{circ}\mathrm{C} this nanostructure leads to the decomposition of the solid solution into an equi-axed microstructure. The grain growth is very limited during aging and the grain size remains under 100nm. The combination of two phases with different crystallographic structures (bcc \alpha-Fe and fcc AuPd) and of the nanoscaled grain size gives rise to a significant hardening of the allo

    Mott transition in Cr-doped V2O3 studied by ultrafast reflectivity: electron correlation effects on the transient response

    Full text link
    The ultrafast response of the prototype Mott-Hubbard system (V1-xCrx)2O3 was systematically studied with fs pump-probe reflectivity, allowing us to clearly identify the effects of the metal-insulator transition on the transient response. The isostructural nature of the phase transition in this material made it possible to follow across the phase diagram the behaviour of the detected coherent acoustic wave, whose average value and lifetime depend on the thermodynamic phase and on the correlated electron density of states. It is also shown how coherent lattice oscillations can play an important role in some changes affecting the ultrafast electronic peak relaxation at the phase transition, changes which should not be mistakenly attributed to genuine electronic effects. These results clearly show that a thorough understanding of the ultrafast response of the material over several tenths of ps is necessary to correctly interpret its sub-ps excitation and relaxation regime, and appear to be of general interest also for other strongly correlated materials.Comment: 6 pages, 3 figures. Europhysics Letters (in press

    Dissecting the spiral galaxy M83: mid-infrared emission and comparison with other tracers of star formation

    Full text link
    We present a detailed mid-infrared study of the nearby, face-on spiral galaxy M83 based on ISOCAM data. M83 is a unique case study, since a wide variety of MIR broad-band filters as well as spectra, covering the wavelength range of 4 to 18\mu m, were observed and are presented here. Emission maxima trace the nuclear and bulge area, star-formation regions at the end of the bar, as well as the inner spiral arms. The fainter outer spiral arms and interarm regions are also evident in the MIR map. Spectral imaging of the central 3'x3' (4 kpc x 4 kpc) field allows us to investigate five regions of different environments. The various MIR components (very small grains, polycyclic aromatic hydrocarbon (PAH) molecules, ionic lines) are analyzed for different regions throughout the galaxy. In the total 4\mu m to 18\mu m wavelength range, the PAHs dominate the luminosity, contributing between 60% in the nuclear and bulge regions and 90% in the less active, interarm regions. Throughout the galaxy, the underlying continuum emission from the small grains is always a smaller contribution in the total MIR wavelength regime, peaking in the nuclear and bulge components. The implications of using broad-band filters only to characterize the mid-infrared emission of galaxies, a commonly used ISOCAM observation mode, are discussed. We present the first quantitative analysis of new H-alpha and 6cm VLA+Effelsberg radio continuum maps of M83. The distribution of the MIR emission is compared with that of the CO, HI, R band, H-alpha and 6cm radio. A striking correlation is found between the intensities in the two mid-infrared filter bands and the 6cm radio continuum. To explain the tight mid-infrared-radio correlation we propose the anchoring of magnetic field lines in the photoionized shells of gas clouds.Comment: 22 pages, 15 figures. Accepted for publication in A&

    Physical conditions in the gas phases of the giant HII region LMC-N11 unveiled by Herschel - I. Diffuse [CII] and [OIII] emission in LMC-N11B

    Full text link
    (Abridged) The Magellanic Clouds provide a nearby laboratory for metal-poor dwarf galaxies. The low dust abundance enhances the penetration of UV photons into the interstellar medium (ISM), resulting in a relatively larger filling factor of the ionized gas. Furthermore, there is likely a hidden molecular gas reservoir probed by the [CII]157um line. We present Herschel/PACS maps in several tracers, [CII], [OI]63um,145um, [NII]122um, [NIII]57um, and [OIII]88um in the HII region N11B in the Large Magellanic Cloud. Halpha and [OIII]5007A images were used as complementary data to investigate the effect of dust extinction. Observations were interpreted with photoionization models to infer the gas conditions and estimate the ionized gas contribution to the [CII] emission. Photodissociation regions (PDRs) are probed through polycyclic aromatic hydrocarbons (PAHs). We first study the distribution and properties of the ionized gas. We then constrain the origin of [CII]157um by comparing to tracers of the low-excitation ionized gas and of PDRs. [OIII] is dominated by extended emission from the high-excitation diffuse ionized gas; it is the brightest far-infrared line, ~4 times brighter than [CII]. The extent of the [OIII] emission suggests that the medium is rather fragmented, allowing far-UV photons to permeate into the ISM to scales of >30pc. Furthermore, by comparing [CII] with [NII], we find that 95% of [CII] arises in PDRs, except toward the stellar cluster for which as much as 15% could arise in the ionized gas. We find a remarkable correlation between [CII]+[OI] and PAH emission, with [CII] dominating the cooling in diffuse PDRs and [OI] dominating in the densest PDRs. The combination of [CII] and [OI] provides a proxy for the total gas cooling in PDRs. Our results suggest that PAH emission describes better the PDR gas heating as compared to the total infrared emission.Comment: Accepted for publication in Astronomy and Astrophysics. Fixed inverted line ratio in Sect. 5.

    Characterization of Flow Dynamics in the Pulmonary Bifurcation of Patients With Repaired Tetralogy of Fallot: A Computational Approach

    Get PDF
    The hemodynamic environment of the pulmonary bifurcation is of great importance for adult patients with repaired tetralogy of Fallot (rTOF) due to possible complications in the pulmonary valve and narrowing of the left pulmonary artery (LPA). The aim of this study was to computationally investigate the effect of geometrical variability and flow split on blood flow characteristics in the pulmonary trunk of patient-specific models. Data from a cohort of seven patients was used retrospectively and the pulmonary hemodynamics was investigated using averaged and MRI-derived patient-specific boundary conditions on the individualized models, as well as a statistical mean geometry. Geometrical analysis showed that curvature and tortuosity are higher in the LPA branch, compared to the right pulmonary artery (RPA), resulting in complex flow patterns in the LPA. The computational analysis also demonstrated high time-averaged wall shear stress (TAWSS) at the outer wall of the LPA and the wall of the RPA proximal to the junction. Similar TAWSS patterns were observed for averaged boundary conditions, except for a significantly modified flow split assigned at the outlets. Overall, this study enhances our understanding about the flow development in the pulmonary bifurcation of rTOF patients and associates some morphological characteristics with hemodynamic parameters, highlighting the importance of patient-specificity in the models. To confirm these findings, further studies are required with a bigger cohort of patients

    Star formation triggered by the Galactic HII region RCW 120: First results from the Herschel Space Observatory

    Get PDF
    By means of different physical mechanisms, the expansion of HII regions can promote the formation of new stars of all masses. RCW 120 is a nearby Galactic HII region where triggered star formation occurs. This region is well-studied - there being a wealth of existing data - and is nearby. However, it is surrounded by dense regions for which far infrared data is essential to obtain an unbiased view of the star formation process and in particular to establish whether very young protostars are present. We attempt to identify all Young Stellar Objects (YSOs), especially those previously undetected at shorter wavelengths, to derive their physical properties and obtain insight into the star formation history in this region. We use Herschel-PACS and -SPIRE images to determine the distribution of YSOs observed in the field. We use a spectral energy distribution fitting tool to derive the YSOs physical properties. Herschel-PACS and -SPIRE images confirm the existence of a young source and allow us to determine its nature as a high-mass (8-10 MSun) Class 0 object (whose emission is dominated by a massive envelope) towards the massive condensation 1 observed at (sub)-millimeter wavelengths. This source was not detected at 24 micron and only barely seen in the MISPGAL 70 micron data. Several other red sources are detected at Herschel wavelengths and coincide with the peaks of the millimeter condensations. SED fitting results for the brightest Herschel sources indicate that, apart from the massive Class 0 that forms in condensation 1, young low mass stars are forming around RCW 120. The YSOs observed on the borders of RCW 120 are younger than its ionizing star, which has an age of about 2.5 Myr.Comment: 5 pqges, 3 figures, accepted by A&A (Special issue on the Herschel first results

    The effects of star formation on the low-metallicity ISM: NGC4214 mapped with Herschel/PACS spectroscopy

    Full text link
    We present Herschel/PACS spectroscopic maps of the dwarf galaxy NC4214 observed in 6 far infrared fine-structure lines: [C II] 158mu, [O III] 88mu, [O I] 63mu, [O I] 146mu, [N II] 122mu, and [N II] 205mu. The maps are sampled to the full telescope spatial resolution and reveal unprecedented detail on ~ 150 pc size scales. We detect [C II] emission over the whole mapped area, [O III] being the most luminous FIR line. The ratio of [O III]/[C II] peaks at about 2 toward the sites of massive star formation, higher than ratios seen in dusty starburst galaxies. The [C II]/CO ratios are 20 000 to 70 000 toward the 2 massive clusters, which are at least an order of magnitude larger than spiral or dusty starbursts, and cannot be reconciled with single-slab PDR models. Toward the 2 massive star-forming regions, we find that L[CII] is 0.5 to 0.8% of the LTIR . All of the lines together contribute up to 2% of LTIR . These extreme findings are a consequence of the lower metallicity and young, massive-star formation commonly found in dwarf galaxies. These conditions promote large-scale photodissociation into the molecular reservoir, which is evident in the FIR line ratios. This illustrates the necessity to move to multiphase models applicable to star-forming clusters or galaxies as a whole.Comment: Accepted for publication in the A&A Herschel Special Issu
    corecore