154 research outputs found

    In situ observation of compressive deformation of an interconnected network of zinc oxide tetrapods

    Get PDF
    Zinc oxide tetrapods have remarkable functional and mechanical properties with potential applications in different fields including nanoelectronic and optoelectronic sensing, functional composites and coatings, as well as energy harvesting and storage. Based on the 3D shape of these microparticles, they can be assembled into highly porous (up to 98%) macroscopic ceramic framework structures that can be utilized as a versatile template for the fabrication of other multi-scaled foam-like materials. Here we investigated the three-dimensional structure of low density interconnected zinc oxide tetrapod networks by high resolution X-ray computed tomography. In situ observations during mechanical loading show inhomogeneous development of anelastic strain (damage) during compression, and homogeneous elastic recovery on unloading. Individual tetrapods are observed to deform by arm rotation to accommodate strain

    On the plasma permeability of highly porous ceramic framework materials using polymers as marker materials

    Get PDF
    Highly porous framework materials are of large interest due to their broad potential for application, for example, as sensors or catalysts. A new approach is presented to investigate, how deep plasma species can penetrate such materials. For this purpose, a polymer (ethylene propylene diene monomere rubber) is used as marker material and covered with the porous material during plasma exposure. Water contact-angle and X-ray photoelectron spectroscopy measurements are used to identify changes in the polymer surface, originating from the interaction of plasma species with the polymer. The method is demonstrated by studying the plasma permeability of tetrapodal zinc oxide framework materials with a porosity of about 90% in an oxygen low-pressure capacitively coupled plasma. Significant differences in the penetration depth ranging from roughly 1.6–4 mm are found for different densities of the material and different treatment conditions

    Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep

    Get PDF
    Introduction: Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Aims: Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Methods: Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results: Results showed that the sound stimulation increased both slow wave (p =.002) and sleep spindle activity (p Conclusions: We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future.Peer reviewe

    Overcoming water diffusion limitations in hydrogels via microtubular graphene networks for soft actuators

    Get PDF
    Hydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ~90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer. Here we show, that incorporating a bioinspired microtube graphene network into a PNIPAM matrix with a total porosity of only 5.4 % dramatically enhances actuation dynamics by up to ~400 % and actuation stress by ~4000 % without sacrificing the mechanical stability, overcoming the water transport limitations. The graphene network provides both untethered light-controlled and electrically-powered actuation. We anticipate that the concept provides a versatile platform for enhancing the functionality of soft matter by combining responsive and two-dimensional materials, paving the way towards designing soft intelligent matter.Comment: Shared First-authorship: Margarethe Hauck and Lena Marie Saur

    Country-specific effects of neonicotinoid pesticides on honey bees and wild bees

    Get PDF
    Neonicotinoid seed dressings have caused concern world-wide. We use large field experiments to assess the effects of neonicotinoid-treated crops on three bee species across three countries (Hungary, Germany, and the United Kingdom). Winter-sown oilseed rape was grown commercially with either seed coatings containing neonicotinoids (clothianidin or thiamethoxam) or no seed treatment (control). For honey bees, we found both negative (Hungary and United Kingdom) and positive (Germany) effects during crop flowering. In Hungary, negative effects on honey bees (associated with clothianidin) persisted over winter and resulted in smaller colonies in the following spring (24% declines). In wild bees (Bombus terrestris and Osmia bicornis), reproduction was negatively correlated with neonicotinoid residues. These findings point to neonicotinoids causing a reduced capacity of bee species to establish new populations in the year following exposure

    Pre-Existing T- and B-Cell Defects in One Progressive Multifocal Leukoencephalopathy Patient

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) usually occurs in patients with severe immunosuppression, hematological malignancies, chronic inflammatory conditions or receiving organ transplant. Recently, PML has also been observed in patients treated with monoclonal antibodies. By taking advantage of the availability of samples from a multiple sclerosis (MS) patient treated with natalizumab, the antibody anti-α4 integrin, who developed PML and was monitored starting before therapy initiation, we investigated the fate of T and B lymphocytes in the onset of PML. Real-time PCR was used to measure new T- and B-cell production by means of T-cell receptor excision circle (TREC) and K-deleting recombination excision circle (KREC) analysis and to quantify transcripts for CD34, terminal-deoxynucleotidyltransferase, and V pre-B lymphocyte gene 1. T- and B-cell subsets and T-cell heterogeneity were measured by flow cytometry and spectratyping. The data were compared to those of untreated and natalizumab-treated MS patients and healthy donors. Before therapy, a patient who developed PML had a low TREC and KREC number; TRECs remained low, while KRECs and pre-B lymphocyte gene 1 transcripts peaked at 6 months of therapy and then decreased at PML diagnosis. Flow cytometry confirmed the deficient number of newly produced T lymphocytes, counterbalanced by an increase in TEMRA cells. The percentage of naive B cells increased by approximately 70% after 6 months of therapy, but B lymphocyte number remained low for the entire treatment period. T-cell heterogeneity and immunoglobulins were reduced
    corecore