11 research outputs found

    Interacción funcional entre la adenosina desaminasa y el receptor A1 de adenosina en la superficie celular

    Get PDF
    [spa] La adenosina deaminasa (ADA) es una enzima del metabolismo purínico que ha sido hallada tanto en el citosol como en la superficie celular. En este estudio se ha demostrado que la ADA interacciona con los receptores A1 de adenosina (A1Rs) en corteza cerebral de cerdo y en la línea celular DDT1MF-2. A través de esta interacción la ADA aumenta la afinidad del receptor A1 por los ligandos agonistas, permite la aparición del estado de alta afinidad del receptor (receptor-proteína G) y es necesaria para la correcta transducción de la señal del receptor A1. Los mecanismos moleculares involucrados en la desensibilización homóloga de los A1Rs se estudiaron en células DDT1MF-2. La exposición crónica de las células con el agonista R- PIA produce una rápida desensibilización funcional, la fosforilación y la agregación en la superficie celular de los receptores A1. La internalización de los A1Rs hacia compartimentos intracelulares es un proceso lento (horas) y conduce a la “down-regulation” de éstos. El antagonista, por el contrario, induce la aparición de nuevos centros de unión en la membrana. Todos los procesos implicados en la desensibilización homóloga del receptor A1 son acelerados y aumentados por la ADA. El agonista induce también la internalización conjunta de la ADA y los A1Rs. Estos resultados muestran una regulación mutua y una vía de endocitosis común de la ADA y el A1R de adenosina durante el proceso de desensibilización. Este es el primer estudio donde se demuestra que un miembro de la familia de receptores acoplados a proteína G requiere una ectoenzima, cuyo sustrato es el ligando del receptor, para una eficiente señalización y regulación funcional

    Adenosine A2A receptor antagonists affects NMDA glutamate receptor function. Potential to address neurodegeneration in Alzheimer's disease

    Get PDF
    (1) Background. N-methyl d-aspartate (NMDA) ionotropic glutamate receptor (NMDAR), which is one of the main targets to combat Alzheimer's disease (AD), is expressed in both neurons and glial cells. The aim of this paper was to assess whether the adenosine A2A receptor (A2AR), which is a target in neurodegeneration, may affect NMDAR functionality. (2) Methods. Immuno-histo/cytochemical, biophysical, biochemical and signaling assays were performed in a heterologous cell expression system and in primary cultures of neurons and microglia (resting and activated) from control and the APPSw,Ind transgenic mice. (3) Results. On the one hand, NMDA and A2A receptors were able to physically interact forming complexes, mainly in microglia. Furthermore, the amount of complexes was markedly enhanced in activated microglia. On the other hand, the interaction resulted in a novel functional entity that displayed a cross-antagonism, that could be useful to prevent the exacerbation of NMDAR function by using A2AR antagonists. Interestingly, the amount of complexes was markedly higher in the hippocampal cells from the APPSw,Ind than from the control mice. In neurons, the number of complexes was lesser, probably due to NMDAR not interacting with the A2AR. However, the activation of the A2AR receptors resulted in higher NMDAR functionality in neurons, probably by indirect mechanisms. (4) Conclusions. A2AR antagonists such as istradefylline, which is already approved for Parkinson's disease (Nouriast® in Japan and Nourianz® in the US), have potential to afford neuroprotection in AD in a synergistic-like fashion. i.e., via both neurons and microglia

    Crtc1 activates a transcriptional program deregulated at early Alzheimer's disease-related stages

    Get PDF
    Cognitive decline is associated with gene expression changes in the brain, but the transcriptional mechanisms underlying memory impairments in cognitive disorders, such as Alzheimer's disease (AD), are largely unknown. Here, we aimed to elucidate relevant mechanisms responsible for transcriptional changes underlying early memory loss in AD by examining pathological, behavioral, and transcriptomic changes in control and mutant β-amyloid precursor protein (APPSw,Ind) transgenic mice during aging. Genome-wide transcriptome analysis using mouse microarrays revealed deregulation of a gene network related with neurotransmission, synaptic plasticity, and learning/memory in the hippocampus of APPSw,Ind mice after spatial memory training. Specifically, APPSw,Ind mice show changes on a cAMP-responsive element binding protein (CREB)-regulated transcriptional program dependent on the CREB-regulated transcription coactivator-1 (Crtc1). Interestingly, synaptic activity and spatial memory induces Crtc1 dephosphorylation (Ser151), nuclear translocation, and Crtc1-dependent transcription in the hippocampus, and these events are impaired in APPSw,Ind mice at early pathological and cognitive decline stages. CRTC1-dependent genes and CRTC1 levels are reduced in human hippocampus at intermediate Braak III/IV pathological stages. Importantly, adeno-associated viral-mediated Crtc1 overexpression in the hippocampus efficiently reverses Aβ-induced spatial learning and memory deficits by restoring a specific subset of Crtc1 target genes. Our results reveal a critical role of Crtc1-dependent transcription on spatial memory formation and provide the first evidence that targeting brain transcriptome reverses memory loss in AD

    N-Methyl-D-aspartate (NMDA) and cannabinoid CB2 receptors form functional complexes in cells of the central nervous system: insights into the therapeutic potential of neuronal and microglial NMDA receptors

    Full text link
    Background: The cannabinoid CB2 receptor (CB2R), which is a target to afford neuroprotection, and N-methyl-D-aspartate (NMDA) ionotropic glutamate receptors, which are key in mediating excitatory neurotransmission, are expressed in both neurons and glia. As NMDA receptors are the target of current medication in Alzheimer's disease patients and with the aim of finding neuromodulators of their actions that could provide benefits in dementia, we hypothesized that cannabinoids could modulate NMDA function. Methods: Immunocytochemistry was used to analyze the colocalization between CB2 and NMDA receptors; bioluminescence resonance energy transfer was used to detect CB2-NMDA receptor complexes. Calcium and cAMP determination, mitogen-activated protein kinase (MAPK) pathway activation, and label-free assays were performed to characterize signaling in homologous and heterologous systems. Proximity ligation assays were used to quantify CB2-NMDA heteromer expression in mouse primary cultures and in the brain of APPSw/Ind transgenic mice, an Alzheimer's disease model expressing the Indiana and Swedish mutated version of the human amyloid precursor protein (APP). Results: In a heterologous system, we identified CB2-NMDA complexes with a particular heteromer print consisting of impairment by cannabinoids of NMDA receptor function. The print was detected in activated primary microglia treated with lipopolysaccharide and interferon-γ. CB2R activation blunted NMDA receptor-mediated signaling in primary hippocampal neurons from APPSw/Ind mice. Furthermore, imaging studies showed that in brain slices and in primary cells (microglia or neurons) from APPSw/Ind mice, there was a marked overexpression of macromolecular CB2-NMDA receptor complexes thus becoming a tool to modulate excessive glutamate input by cannabinoids. Conclusions: The results indicate a negative cross-talk in CB2-NMDA complexes signaling. The expression of the CB2-NMDA receptor heteromers increases in both microglia and neurons from the APPSw/Ind transgenic mice, compared with levels in samples from age-matched control mice

    Adenosine deaminase and A1 adenosine receptors internalize together following agonist-induced receptor desensitization

    Get PDF
    A1 adenosine receptors (A1Rs) and adenosine deaminase (ADA; EC 3.5.4.4) interact on the cell surface of DDT1MF-2 smooth muscle cells. The interaction facilitates ligand binding and signaling via A1R, but it is not known whether it has a role in homologous desensitization of A1Rs. Here we show that chronic exposure of DDT1MF-2 cells to the A1R agonist,N 6-(R)-(phenylisopropyl)adenosine (R-PIA), caused a rapid aggregation or clustering of A1 receptor molecules on the cell membrane, which was enhanced by pretreatment with ADA. Colocalization between A1R and ADA occurred in the R-PIA-induced clusters. Interestingly, colocalization between A1R and ADA also occurred in intracellular vesicles after internalization of both protein molecules in response to R-PIA. Agonist-induced aggregation of A1Rs was mediated by phosphorylation of A1Rs, which was enhanced and accelerated in the presence of ADA. Ligand-induced second-messenger desensitization of A1Rs was also accelerated in the presence of exogenous ADA, and it correlated well with receptor phosphorylation. However, although phosphorylation of A1R returned to its basal state within minutes, desensitization continued for hours. The loss of cell-surface binding sites (sequestration) induced by the agonist was time-dependent (t½= 10 ± 1 h) and was accelerated by ADA. All of these results strongly suggest that ADA plays a key role in the regulation of A1Rs by accelerating ligand-induced desensitization and internalization and provide evidence that the two cell surface proteins internalize via the same endocytic pathway

    Long-term memory deficits in Huntington's disease are associated with reduced CBP histone acetylase activity

    Get PDF
    Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by an expanded CAG/polyglutamine repeat in the coding region of the huntingtin (htt) gene. Although HD is classically considered a motor disorder, there is now considerable evidence that early cognitive deficits appear in patients before the onset of motor disturbances. Here we demonstrate early impairment of long-term spatial and recognition memory in heterozygous HD knock-in mutant mice (Hdh(Q7/Q111)), a genetically accurate HD mouse model. Cognitive deficits are associated with reduced hippocampal expression of CREB-binding protein (CBP) and diminished levels of histone H3 acetylation. In agreement with reduced CBP, the expression of CREB/CBP target genes related to memory, such c-fos, Arc and Nr4a2, was significantly reduced in the hippocampus of Hdh(Q7/Q111) mice compared with wild-type mice. Finally, and consistent with a role of CBP in cognitive impairment in Hdh(Q7/Q111) mice, administration of the histone deacetylase inhibitor trichostatin A rescues recognition memory deficits and transcription of selective CREB/CBP target genes in Hdh(Q7/Q111) mice. These findings demonstrate an important role for CBP in cognitive dysfunction in HD and suggest the use of histone deacetylase inhibitors as a novel therapeutic strategy for the treatment of memory deficits in this disease

    Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases

    Get PDF
    GPR18, still considered an orphan receptor, may respond to endocannabinoids, whose canonical receptors are CB1 and CB2. GPR18 and CB2 receptors share a role in peripheral immune response regulation and are co-expressed in microglia, which are immunocompetent cells in the central nervous system (CNS). We aimed at identifying heteroreceptor complexes formed by GPR18 and CB1R or CB2R in resting and activated microglia. Receptor-receptor interaction was assessed using energy-transfer approaches, and receptor function by determining cAMP levels and ERK1/2 phosphorylation in heterologous cells and primary cultures of microglia. Heteroreceptor identification in primary cultures of microglia was achieved by in situ proximity ligation assays. Energy transfer results showed interaction of GPR18 with CB2R but not with CB1R. CB2-GPR18 heteroreceptor complexes displayed particular functional properties (heteromer prints) often consisting of negative cross-talk (activation of one receptor reduces signaling arising from the partner receptor) and cross-antagonism (the response of one of the receptors is blocked by a selective antagonist of the partner receptor). Activated microglia showed the heteromer print (negative cross-talk and bidirectional cross-antagonism) and increased expression of CB2R and GPR18. Due to the important role of CB2R in neuroprotection, we further investigated heteroreceptor occurrence in primary cultures of microglia from transgenic mice overexpressing human APPSw,Ind, an Alzheimer's disease model. Microglial cells from transgenic mice showed the heteromer print and functional interactions that were similar to those found in cells from wild-type animals that were activated by treatment with lipopolysaccharide and interferon-ɤ. Our results show that GPR18 and its heteromers may play important roles in neurodegenerative processes

    Short-term environmental enrichment rescues adult neurogenesis and memory deficits in APPSw,Ind transgenic mice

    No full text
    Epidemiological studies indicate that intellectual activity prevents or delays the onset of Alzheimer's disease (AD). Similarly, cognitive stimulation using environmental enrichment (EE), which increases adult neurogenesis and functional integration of newborn neurons into neural circuits of the hippocampus, protects against memory decline in transgenic mouse models of AD, but the mechanisms involved are poorly understood. To study the therapeutic benefits of cognitive stimulation in AD we examined the effects of EE in hippocampal neurogenesis and memory in a transgenic mouse model of AD expressing the human mutant β-amyloid (Aβ) precursor protein (APPSw,Ind). By using molecular markers of new generated neurons (bromodeoxiuridine, NeuN and doublecortin), we found reduced neurogenesis and decreased dendritic length and projections of doublecortin-expressing cells of the dentate gyrus in young APPSw,Ind transgenic mice. Moreover, we detected a lower number of mature neurons (NeuN positive) in the granular cell layer and a reduced volume of the dentate gyrus that could be due to a sustained decrease in the incorporation of new generated neurons. We found that short-term EE for 7 weeks efficiently ameliorates early hippocampal-dependent spatial learning and memory deficits in APPSw,Ind transgenic mice. The cognitive benefits of enrichment in APPSw,Ind transgenic mice were associated with increased number, dendritic length and projections to the CA3 region of the most mature adult newborn neurons. By contrast, Aβ levels and the total number of neurons in the dentate gyrus were unchanged by EE in APPSw,Ind mice. These results suggest that promoting the survival and maturation of adult generated newborn neurons in the hippocampus may contribute to cognitive benefits in AD mouse models

    Adenosine deaminase and A1 adenosine receptors internalize together following agonist-induced receptor desensitization

    No full text
    A1 adenosine receptors (A1Rs) and adenosine deaminase (ADA; EC 3.5.4.4) interact on the cell surface of DDT1MF-2 smooth muscle cells. The interaction facilitates ligand binding and signaling via A1R, but it is not known whether it has a role in homologous desensitization of A1Rs. Here we show that chronic exposure of DDT1MF-2 cells to the A1R agonist,N 6-(R)-(phenylisopropyl)adenosine (R-PIA), caused a rapid aggregation or clustering of A1 receptor molecules on the cell membrane, which was enhanced by pretreatment with ADA. Colocalization between A1R and ADA occurred in the R-PIA-induced clusters. Interestingly, colocalization between A1R and ADA also occurred in intracellular vesicles after internalization of both protein molecules in response to R-PIA. Agonist-induced aggregation of A1Rs was mediated by phosphorylation of A1Rs, which was enhanced and accelerated in the presence of ADA. Ligand-induced second-messenger desensitization of A1Rs was also accelerated in the presence of exogenous ADA, and it correlated well with receptor phosphorylation. However, although phosphorylation of A1R returned to its basal state within minutes, desensitization continued for hours. The loss of cell-surface binding sites (sequestration) induced by the agonist was time-dependent (t½= 10 ± 1 h) and was accelerated by ADA. All of these results strongly suggest that ADA plays a key role in the regulation of A1Rs by accelerating ligand-induced desensitization and internalization and provide evidence that the two cell surface proteins internalize via the same endocytic pathway

    β-amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1

    No full text
    Activity-dependent gene expression mediating changes of synaptic efficacy is important for memory storage, but the mechanisms underlying gene transcriptional changes in age-related memory disorders are poorly understood. In this study, we report that gene transcription mediated by the cAMP-response element binding protein (CREB)-regulated transcription coactivatorCRTC1is impaired in neurons and brain from an Alzheimer's disease (AD) transgenic mouse expressing the human β-amyloid precursor protein (APPSw,Ind). Suppression of CRTC1-dependent gene transcription by β-amyloid (Aβ) in response to cAMP and Ca2+ signals is mediated by reduced calcium influx and disruption of PP2B/calcineurin-dependent CRTC1 dephosphorylation at Ser151. Consistently, expression of CRTC1 or active CRTC1 S151A and calcineurin mutants reverse the deficits on CRTC1 transcriptional activity in APPSw,Ind neurons. Inhibition of calcium influx by pharmacological blockade of L-type voltage-gated calcium channels (VGCCs), but not by blocking NMDA or AMPA receptors, mimics the decrease on CRTC1 transcriptional activity observed in APPSw,Ind neurons, whereas agonists of L-type VGCCs reverse efficiently these deficits. Consistent with a role of CRTC1 on Aβ-induced synaptic and memory dysfunction, we demonstrate a selective reduction of CRTC1-dependent genes related to memory (Bdnf, c-fos, and Nr4a2) coinciding with hippocampal-dependent spatial memory deficits in APPSw,Ind mice. These findings suggest that CRTC1 plays a key role in coupling synaptic activity to gene transcription required for hippocampal-dependent memory, and that Aβ could disrupt cognition by affecting CRTC1 function
    corecore