7 research outputs found

    Life cycles and secondary production of Ephemeroptera, Plecoptera, and Trichoptera (Insecta) under an extreme continental climate (River Kharaa, Mongolia)

    Get PDF
    Since the 1990s water quality monitoring projects using aquatic insects or macroinvertebrates as bioindication in Mongolia has mostly occurred in rivers drainage to the Arctic Ocean. They have been conducted to identify different anthropogentic stressors and impacts upon these running water ecosystems. However, there are still knowledge gaps and uncertainties concerning the research of these macroinvertebrates, in particular, a life cycle study of representative species are one such section of information missing. The specific aim for the study was to determine their life cycles and secondary production of selected species in the Kharaa River Basin, Mongolia, where these animals are exposed to harsh environment conditions. The main challenges for the research project were selecting the most suitable methods for use in the field sampling campaigns as well as establishing biomonitoring criteria for the target species under the extreme harsh climatic conditions. The research also sorts to address the pre-existing taxonomical identification problems. Consequently, a multi-habitat quantitative sampling method, and emergence traps type ‘Model week’ were selected. Five specific traits were chosen as selection criteria from the literature, where the life cycles of numerous species were investigated under comparable conditions to this study. Based on those five distinct criteria, a total of 18 species from EPT group (Ephemeroptera, Plecoptera, and Trichoptera) were selected for deeper analysis. This thesis provided the first quantitative results on the life cycle, production, growth rate and emergence of aquatic insects from Mongolia, to allow comparisons with studies in other regions using the same methods. However, it still needs more quantitative research of population dynamics for a wider range of species including fecundity, accurate development rates, mortality losses (e.g., due to predation), and food availability across environmental gradients of hydraulic conditions and substrate types. In conclusion, last not least it is essential to obtain knowledge especially about life cycle strategies of macroinvertebrates to identify the indicator-properties of single species and to predict re-colonisation potential of disturbed habitats and to evaluate the efficiency of management measures

    Life cycles and secondary production of Ephemeroptera, Plecoptera, and Trichoptera (Insecta) under an extreme continental climate (River Kharaa, Mongolia)

    Get PDF
    Since the 1990s water quality monitoring projects using aquatic insects or macroinvertebrates as bioindication in Mongolia has mostly occurred in rivers drainage to the Arctic Ocean. They have been conducted to identify different anthropogentic stressors and impacts upon these running water ecosystems. However, there are still knowledge gaps and uncertainties concerning the research of these macroinvertebrates, in particular, a life cycle study of representative species are one such section of information missing. The specific aim for the study was to determine their life cycles and secondary production of selected species in the Kharaa River Basin, Mongolia, where these animals are exposed to harsh environment conditions. The main challenges for the research project were selecting the most suitable methods for use in the field sampling campaigns as well as establishing biomonitoring criteria for the target species under the extreme harsh climatic conditions. The research also sorts to address the pre-existing taxonomical identification problems. Consequently, a multi-habitat quantitative sampling method, and emergence traps type ‘Model week’ were selected. Five specific traits were chosen as selection criteria from the literature, where the life cycles of numerous species were investigated under comparable conditions to this study. Based on those five distinct criteria, a total of 18 species from EPT group (Ephemeroptera, Plecoptera, and Trichoptera) were selected for deeper analysis. This thesis provided the first quantitative results on the life cycle, production, growth rate and emergence of aquatic insects from Mongolia, to allow comparisons with studies in other regions using the same methods. However, it still needs more quantitative research of population dynamics for a wider range of species including fecundity, accurate development rates, mortality losses (e.g., due to predation), and food availability across environmental gradients of hydraulic conditions and substrate types. In conclusion, last not least it is essential to obtain knowledge especially about life cycle strategies of macroinvertebrates to identify the indicator-properties of single species and to predict re-colonisation potential of disturbed habitats and to evaluate the efficiency of management measures

    Initial Characterization and Water Quality Assessment of Stream Landscapes in Northern Mongolia

    No full text
    A comprehensive monitoring project (2006–2013) provided data on hydrology, hydromorphology, climatology, water physico-chemistry, sedimentology, macroinvertebrate community and fish diversity in the Kharaa River basin in northern Mongolia, thus enabling, for the first time, a detailed characterization of the stream landscapes. Surface waters were categorized into separate “water bodies” according to their identifiable abiotic and biocoenotic features, subsequently creating the smallest management sub-units within the river basin. Following the approach of the European Water Framework Directive (EC-WFD), in order to obtain a good ecological status (GES), four clearly identifiable water bodies in the Kharaa River main channel and seven water bodies consisting of the basin’s tributaries were delineated. The type-specific undisturbed reference state of various aquatic ecosystems was identified in the assessment and used to set standards for restoration goals. With regards to water quality and quantity, the upper reaches of the Kharaa River basin in the Khentii Mountains were classified as having a “good” ecological and chemical status. Compared with these natural reference conditions in the upper reaches, the initial risk assessment identified several “hot spot” regions with impacted water bodies in the middle and lower basin. Subsequently, the affected water bodies are at risk of not obtaining a level of good ecological and/or chemical status for surface waters. Finally, a matrix of cause-response relationships and stressor complexes has been developed and is presented here. The applicability of management approaches is discussed to better foster the development of a sustainable river basin management plan. The application of natural references states offers a sound scientific base to assess the impact of anthropogenic activities across the Kharaa River basin

    Science-Based IWRM Implementation in a Data-Scarce Central Asian Region: Experiences from a Research and Development Project in the Kharaa River Basin, Mongolia

    No full text
    Mongolia is not only a water-scarce but also a data-scarce country with regard to environmental information. At the same time, regional effects of global climate change, major land use changes, a booming mining sector, and growing cities with insufficient and decaying water and wastewater infrastructures result in an increasingly unsustainable exploitation and contamination of ground and surface water resources putting at risk both aquatic ecosystems and human health. For the mesoscale (≈15,000 km2) model region of the Kharaa River Basin (KRB), we investigated (1) the current state of aquatic ecosystems, water availability and quality; (2) past and expected future trends in these fields and their drivers; (3) water governance structures and their recent reforms; and (4) technical and non-technical interventions as potential components of an integrated water resources management (IWRM). By now, the KRB is recognized as one of the most intensively studied river basins of the country, and considered a model region for science-based water resources management by the Mongolian government which recently adopted the IWRM concept in its National Water Program. Based on the scientific results and practical experiences from a six-year project in the KRB, the potentials and limitations of IWRM implementation under the conditions of data-scarcity are discussed

    Metadata describing the Kharaa Yeröö River Basin Water Quality Database

    No full text
    n the framework of the BMBF funded project on Integrated Water Resources Management in Central Asia (Model region Mongolia, MOMO project, www.iwrm-momo.de) the objectives focused on supplementing, validating and extending the existing surveillance monitoring to the entire river basin for the time series 2006-2017. The MOMO monitoring programme was set up in order to observe seasonal variation in various water quality parameters along the main river course and its tributaries. A detailed sampling survey was carried out along the Kharaa River in the spring, summer and autumn of 2006 to 2017, extending from the headwaters in the Khentii Mountains to the outlet of the river basin. An additional continuous monthly monitoring programme for surface water quality was carried out upstream (Deed Guur) and downstream of Darkhan city (Buren Tolgoi) including the outlet of WWTP Darkhan in the time between 2007 and 2017. This strategy provides information for the efficient and effective design of future monitoring programmes with a focus on operational or investigative issues. The types of water sampling programmes included initial surveys as well as investigative and operational monitoring, point-source characterization, intensive surveys, fixed-station-network monitoring, groundwater monitoring, and special surveys involving chemical and biological monitoring. The water analyses have a focus on nutrients, heavy metals and metalloids, chloride, boron and the main physical water parameters. The dataset comprises also fluvial sediment analyses on heavy metals. In addition in 2017 a special hygienic monitoring (total coliforms, E. coli and fecal coliforms) has been carried out and was included in this database
    corecore