16 research outputs found

    Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege

    Full text link
    Microglial cells maintain the immunological integrity of the healthy brain and can exert protection from traumatic injury. During ischemic tissue damage such as stroke, peripheral immune cells acutely infiltrate the brain and may exacerbate neurodegeneration. Whether and how microglia can protect from this insult is unknown. Polymorphonuclear neutrophils (PMNs) are a prominent immunologic infiltrate of ischemic lesions in vivo. Here, we show in organotypic brain slices that externally applied invading PMNs massively enhance ischemic neurotoxicity. This, however, is counteracted by additional application of microglia. Time-lapse imaging shows that microglia exert protection by rapid engulfment of apoptotic, but, strikingly, also viable, motile PMNs in cell culture and within brain slices. PMN engulfment is mediated by integrin- and lectin-based recognition. Interference with this process using RGDS peptides and N-acetyl-glucosamine blocks engulfment of PMNs and completely abrogates the neuroprotective function of microglia. Thus, engulfment of invading PMNs by microglia may represent an entirely new mechanism of CNS immune privilege

    Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat

    Get PDF
    Previously we have demonstrated that a Rhodiola crenulata extract (RCE), containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD) induced by an intracerebroventricular injection of streptozotocin (STZ), and to determine whether this neuroprotective effect is induced by the antioxidative activity of salidroside. Our results showed that pretreatment with the RCE significantly improved the impaired neurogenesis and simultaneously reduced the oxidative stress in the hippocampus of AD rats. In vitro studies revealed that (1) exposure of neural stem cells (NSCs) from the hippocampus to STZ strikingly increased intracellular reactive oxygen species (ROS) levels, induced cell death and perturbed cell proliferation and differentiation, (2) hydrogen peroxide induced similar cellular activities as STZ, (3) pre-incubation of STZ-treated NSCs with catalase, an antioxidant, suppressed all these cellular activities induced by STZ, and (4) likewise, pre-incubation of STZ-treated NSCs with salidroside, also an antioxidant, suppressed all these activities as catalase: reduction of ROS levels and NSC death with simultaneous increases in proliferation and differentiation. Our findings indicated that the RCE improved the impaired hippocampal neurogenesis in the rat model of AD through protecting NSCs by its main ingredient salidroside which scavenged intracellular ROS

    Mesenchymal Stem Cell Graft Improves Recovery after Spinal Cord Injury in Adult Rats through Neurotrophic and Pro-Angiogenic Actions

    Get PDF
    Numerous strategies have been managed to improve functional recovery after spinal cord injury (SCI) but an optimal strategy doesn't exist yet. Actually, it is the complexity of the injured spinal cord pathophysiology that begets the multifactorial approaches assessed to favour tissue protection, axonal regrowth and functional recovery. In this context, it appears that mesenchymal stem cells (MSCs) could take an interesting part. The aim of this study is to graft MSCs after a spinal cord compression injury in adult rat to assess their effect on functional recovery and to highlight their mechanisms of action. We found that in intravenously grafted animals, MSCs induce, as early as 1 week after the graft, an improvement of their open field and grid navigation scores compared to control animals. At the histological analysis of their dissected spinal cord, no MSCs were found within the host despite their BrdU labelling performed before the graft, whatever the delay observed: 7, 14 or 21 days. However, a cytokine array performed on spinal cord extracts 3 days after MSC graft reveals a significant increase of NGF expression in the injured tissue. Also, a significant tissue sparing effect of MSC graft was observed. Finally, we also show that MSCs promote vascularisation, as the density of blood vessels within the lesioned area was higher in grafted rats. In conclusion, we bring here some new evidences that MSCs most likely act throughout their secretions and not via their own integration/differentiation within the host tissue

    Text

    No full text
    corecore